[1] |
Ensley SM. Organochlorines. In: Gupta RC. Veterinary Toxicology. 3rd ed. Elsevier. 2018, 509-13. |
[2] |
Carolin C F, Kamalesh T, Senthil Kumar P, et al. An insights of organochlorine pesticides categories, properties, eco-toxicity and new developments in bioremediation process. Environ Pollut, 2023; 333, 122114. doi: 10.1016/j.envpol.2023.122114 |
[3] |
Ali U, Syed JH, Malik RN, et al. Organochlorine pesticides (OCPs) in South Asian region: a review. Sci Total Environ, 2014; 476-477, 705-17. |
[4] |
Hu JX, Zhu T, Li QL. Organochlorine pesticides in China. Dev Environ Sci, 2007; 7, 159−211. |
[5] |
Zhang Y, Qi SH, Xing XL, et al. Legacies of organochlorine pesticides (OCPs) in soil of China—a review, and cases in southwest and Southeast China. In: De Vivo B, Belkin HE, Lima A. Environmental Geochemistry. 3rd ed. Elsevier. 2024, 519-47. |
[6] |
Sheriff I, Debela SA, Mans-Davies A. The listing of new persistent organic pollutants in the Stockholm convention: its burden on developing countries. Environ Sci Policy, 2022; 130, 9−15. doi: 10.1016/j.envsci.2022.01.005 |
[7] |
Lu Y, Zhou SB, Li BX. Exposure to environmental hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) among rural children in north Eastern China. Biomed Environ Sci, 2010; 23, 230−3. doi: 10.1016/S0895-3988(10)60057-8 |
[8] |
Olisah C, Okoh OO, Okoh AI. Occurrence of organochlorine pesticide residues in biological and environmental matrices in Africa: a two-decade review. Heliyon, 2020; 6, e03518. doi: 10.1016/j.heliyon.2020.e03518 |
[9] |
Pattnaik M, Pany BK, Jena D, et al. Effect of organochlorine pesticides on living organisms and environment. Chem Sci Rev Lett, 2020; 9, 682−6. |
[10] |
Zhang LF, Dong L, Yang WL, et al. Passive air sampling of organochlorine pesticides and polychlorinated biphenyls in the Yangtze River Delta, China: concentrations, distributions, and cancer risk assessment. Environ Pollut, 2013; 181, 159−66. doi: 10.1016/j.envpol.2013.06.033 |
[11] |
Fang YY, Nie ZQ, Die Q, et al. Organochlorine pesticides in soil, air, and vegetation at and around a contaminated site in Southwestern China: concentration, transmission, and risk evaluation. Chemosphere, 2017; 178, 340−9. doi: 10.1016/j.chemosphere.2017.02.151 |
[12] |
Taiwo AM. A review of environmental and health effects of organochlorine pesticide residues in Africa. Chemosphere, 2019; 220, 1126−40. doi: 10.1016/j.chemosphere.2019.01.001 |
[13] |
Rea WJ, Patel KD. Pesticides and chronic diseases. In: Rea WJ, Patel KD. Reversibility of Chronic Disease and Hypersensitivity, Volume 4. CRC Press. 2017, 649-904. |
[14] |
Mohammadkhani MA, Shahrzad S, Haghighi M, et al. Insights into organochlorine pesticides exposure in the development of cardiovascular diseases: a systematic review. Arch Iran Med, 2023; 26, 592−9. doi: 10.34172/aim.2023.86 |
[15] |
Mata TM, Felgueiras F, Martins AA, et al. Indoor air quality in elderly centers: pollutants emission and health effects. Environments, 2022; 9, 86. doi: 10.3390/environments9070086 |
[16] |
Chen YY, Klein SL, Garibaldi BT, et al. Aging in COVID-19: vulnerability, immunity and intervention. Ageing Res Rev, 2021; 65, 101205. doi: 10.1016/j.arr.2020.101205 |
[17] |
de Paula Santos U, Arbex MA, Braga ALF, et al. Environmental air pollution: respiratory effects. J Bras Pneumol, 2021; 47, e20200267. |
[18] |
Zhu YB, Liang RZ, Pu LN, et al. Relevance of household chemical usage to respiratory diseases in older adults in China. Biomed Environ Sci, 2024; 37, 1373−84. |
[19] |
Ye M, Beach J, Martin JW, et al. Association between lung function in adults and plasma DDT and DDE levels: results from the Canadian health measures survey. Environ Health Perspect, 2015; 123, 422−7. doi: 10.1289/ehp.1408217 |
[20] |
Balte PP, Kühr J, Kruse H, et al. Body burden of dichlorodiphenyl dichloroethene (DDE) and childhood pulmonary function. Int J Environ Res Public Health, 2017; 14, 1376. doi: 10.3390/ijerph14111376 |
[21] |
Lugg ST, Scott A, Parekh D, et al. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease. Thorax, 2022; 77, 94−101. doi: 10.1136/thoraxjnl-2020-216296 |
[22] |
Brandenberger C, Mühlfeld C. Mechanisms of lung aging. Cell Tissue Res, 2017; 367, 469−80. doi: 10.1007/s00441-016-2511-x |
[23] |
Bezerra FS, Lanzetti M, Nesi RT, et al. Oxidative stress and inflammation in acute and chronic lung injuries. Antioxidants (Basel), 2023; 12, 548. doi: 10.3390/antiox12030548 |
[24] |
Wang GF, Zhang YZ, Yang HY, et al. Impact of air pollutants on lung function and inflammatory response in asthma in Shanghai. Biomed Environ Sci, 2024; 37, 811−22. |
[25] |
Liu YY, Milanesi A, Brent GA. Thyroid hormones. In: Litwack G. Hormonal Signaling in Biology and Medicine. Elsevier. 2020, 487-506. |
[26] |
Flory CM, Norris BJ, Larson NA, et al. A preclinical safety study of thyroid hormone instilled into the lungs of healthy rats-an investigational therapy for ARDS. J Pharmacol Exp Ther, 2021; 376, 74−83. doi: 10.1124/jpet.120.000060 |
[27] |
Guo XJ, Ren HM, Sun PJ, et al. Personal exposure to airborne organic pollutants and lung function changes among healthy older adults. Environ Res, 2024; 258, 119411. doi: 10.1016/j.envres.2024.119411 |
[28] |
Tang S, Li TT, Fang JL, et al. The exposome in practice: an exploratory panel study of biomarkers of air pollutant exposure in Chinese people aged 60-69 years (China BAPE study). Environ Int, 2021; 157, 106866. doi: 10.1016/j.envint.2021.106866 |
[29] |
Ding EM, Deng FC, Fang JL, et al. Association between organophosphate ester exposure and insulin resistance with glycometabolic disorders among older Chinese adults 60-69 years of age: evidence from the China BAPE study. Environ Health Perspect, 2023; 131, 047009. doi: 10.1289/EHP11896 |
[30] |
Ding EM, Deng FC, Fang JL, et al. Exposome-wide ranking to uncover environmental chemicals associated with dyslipidemia: a panel study in healthy older Chinese adults from the BAPE study. Environ Health Perspect, 2024; 132, 097005. doi: 10.1289/EHP13864 |
[31] |
Guo PF, Lin EZ, Koelmel JP, et al. Exploring personal chemical exposures in China with wearable air pollutant monitors: a repeated-measure study in healthy older adults in Jinan, China. Environ Int, 2021; 156, 106709. doi: 10.1016/j.envint.2021.106709 |
[32] |
Koelmel JP, Lin EZ, Guo PF, et al. Exploring the external exposome using wearable passive samplers - the China BAPE study. Environ Pollut, 2021; 270, 116228. doi: 10.1016/j.envpol.2020.116228 |
[33] |
Brusasco V, Crapo R, Viegi G. Coming together: the ATS/ERS consensus on clinical pulmonary function testing. Eur Respir J, 2005; 26, 1−2. doi: 10.1183/09031936.05.00034205 |
[34] |
Fang JL, Gao Y, Zhang MY, et al. Personal PM2.5 elemental components, decline of lung function, and the role of DNA methylation on inflammation-related genes in older adults: results and implications of the BAPE study. Environ Sci Technol, 2022; 56, 15990−6000. doi: 10.1021/acs.est.2c04972 |
[35] |
Shi WY, Fang JL, Ren HM, et al. Association between exposure to chemical mixtures and epigenetic ageing biomarkers: modifying effects of thyroid hormones and physical activity. J Hazard Mater, 2024; 469, 134009. doi: 10.1016/j.jhazmat.2024.134009 |
[36] |
Williams GA, Kibowski F. Latent class analysis and latent profile analysis. In: Jason LA, Glenwick DS. Handbook of Methodological Approaches to Community-Based Research: Qualitative, Quantitative, and Mixed Methods. Oxford University Press. 2016, 143-51. |
[37] |
He J, Fan X. Latent profile analysis. In: Zeigler-Hill V, Shackelford TK. Encyclopedia of Personality and Individual Differences. Springer. 2020, 1-4. |
[38] |
Barroso AT, Martín EM, Romero LMR, et al. Factors affecting lung function: a review of the literature. Archivos Bronconeumol, 2018; 54, 327−32. |
[39] |
Salisbury ML, Xia M, Zhou YR, et al. Idiopathic pulmonary fibrosis: gender-age-physiology index stage for predicting future lung function decline. Chest, 2016; 149, 491−8. doi: 10.1378/chest.15-0530 |
[40] |
Chen XX, Zheng XL, Ding ZJ, et al. Relationship of gender and age on thyroid hormone parameters in a large Chinese population. Arch Endocrinol Metab, 2019; 64, 52−8. |
[41] |
Fang WB, Cao YW, Chen YY, et al. Associations of family income and healthy lifestyle with all-cause mortality. J Glob Health, 2023; 13, 04150. doi: 10.7189/jogh.13.04150 |
[42] |
Dieteren C, Bonfrer I. Socioeconomic inequalities in lifestyle risk factors across low-and middle-income countries. BMC Public Health, 2021; 21, 951. doi: 10.1186/s12889-021-11014-1 |
[43] |
Low BS, Selvaraja KG, Ong TH, et al. Education background and monthly household income are factors affecting the knowledge, awareness and practice on haze pollution among Malaysians. Environ Sci Pollut Res Int, 2020; 27, 30419−25. doi: 10.1007/s11356-020-09196-z |
[44] |
The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med, 2017; 377, 13−27. doi: 10.1056/NEJMoa1614362 |
[45] |
Suzuki T, Hidaka T, Kumagai Y, et al. Environmental pollutants and the immune response. Nat Immunol, 2020; 21, 1486−95. doi: 10.1038/s41590-020-0802-6 |
[46] |
Ferro A, Teixeira D, Pestana D, et al. POPs' effect on cardiometabolic and inflammatory profile in a sample of women with obesity and hypertension. Arch Environ Occup Health, 2019; 74, 310−21. doi: 10.1080/19338244.2018.1535480 |
[47] |
Jang TC, Jang JH, Lee KW. Mechanism of acute endosulfan intoxication-induced neurotoxicity in Sprague-Dawley rats. Arh Hig Rada Toksikol, 2016; 67, 9−17. doi: 10.1515/aiht-2016-67-2702 |
[48] |
Thota S, Begum R, Kaur G, et al. Pentachlorophenol mediated regulation of DAMPs and inflammation: in vitro study. Toxicol In Vitro, 2022; 83, 105378. doi: 10.1016/j.tiv.2022.105378 |
[49] |
Moldoveanu B, Otmishi P, Jani P, et al. Inflammatory mechanisms in the lung. J Inflamm Res, 2008; 2, 1−11. |
[50] |
Kallapur SG, Jobe AH. Contribution of inflammation to lung injury and development. Arch Dis Child Fetal Neonatal Ed, 2006; 91, F132−5. doi: 10.1136/adc.2004.068544 |
[51] |
Lee JS, Rosengart MR, Kondragunta V, et al. Inverse association of plasma IL-13 and inflammatory chemokines with lung function impairment in stable COPD: a cross-sectional cohort study. Respir Res, 2007; 8, 64. doi: 10.1186/1465-9921-8-64 |
[52] |
Kubysheva N, Boldina M, Eliseeva T, et al. Relationship of serum levels of IL-17, IL-18, TNF-α, and lung function parameters in patients with COPD, asthma-COPD overlap, and bronchial asthma. Mediators Inflamm, 2020; 2020, 4652898. |
[53] |
Keskinidou C, Vassiliou AG, Dimopoulou I, et al. Mechanistic understanding of lung inflammation: recent advances and emerging techniques. J Inflamm Res, 2022; 15, 3501−46. doi: 10.2147/JIR.S282695 |
[54] |
Arias-Pérez RD, Taborda NA, Gómez DM, et al. Inflammatory effects of particulate matter air pollution. Environ Sci Pollut Res Int, 2020; 27, 42390−404. doi: 10.1007/s11356-020-10574-w |
[55] |
Benjamin JT, Plosa EJ, Sucre JMS, et al. Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD. J Clin Invest, 2021; 131, e139481. doi: 10.1172/JCI139481 |
[56] |
He F, Liao BL, Pu JD, et al. Exposure to ambient particulate matter induced COPD in a rat model and a description of the underlying mechanism. Sci Rep, 2017; 7, 45666. doi: 10.1038/srep45666 |
[57] |
Xiao YQ, Zhang L, Liu H, et al. Systemic inflammation mediates environmental polycyclic aromatic hydrocarbons to increase chronic obstructive pulmonary disease risk in United States adults: a cross-sectional NHANES study. Front Public Health, 2023; 11, 1248812. doi: 10.3389/fpubh.2023.1248812 |
[58] |
Zheng YZ, Hu JQ, Chen JQ, et al. Association between dust exposure and lung function levels in steelworkers: mediation analysis of inflammatory biomarkers. Int Arch Occup Environ Health, 2024; 97, 971−980. doi: 10.1007/s00420-024-02101-y |
[59] |
Wang YC, Yu YQ, Zhang XX, et al. Combined association of urinary volatile organic compounds with chronic bronchitis and emphysema among adults in NHANES 2011-2014: the mediating role of inflammation. Chemosphere, 2024; 361, 141485. doi: 10.1016/j.chemosphere.2024.141485 |
[60] |
Qin XD, Zhou Y, Bloom MS, et al. Prenatal exposure to PFAS, associations with preterm birth and modification by maternal estrogen levels: the Maoming birth study. Environ Health Perspect, 2023; 131, 117006. doi: 10.1289/EHP11377 |
[61] |
Lin JS, Leung J, Yu B, et al. Socioeconomic status as an effect modifier of the association between built environment and mortality in elderly Hong Kong Chinese: a latent profile analysis. Environ Res, 2021; 195, 110830. doi: 10.1016/j.envres.2021.110830 |
[62] |
Yonkman AM, Alampi JD, Kaida A, et al. Using latent profile analysis to identify associations between gestational chemical mixtures and child neurodevelopment. Epidemiology, 2023; 34, 45−55. doi: 10.1097/EDE.0000000000001554 |
[63] |
Ogilvy-Stuart AL. Thyroid hormones and lung development. J Pediatr Endocrinol Metab, 2007; 20(S), 115-8. |
[64] |
Pelizzo G, Calcaterra V, Baldassarre P, et al. The impact of hormones on lung development and function: an overlooked aspect to consider from early childhood. Front Endocrinol, 2024; 15, 1425149. doi: 10.3389/fendo.2024.1425149 |
[65] |
Dev N, Sankar J, Vinay MV. Functions of thyroid hormones. In: Imam SK, Ahmad SI. Thyroid Disorders: Basic Science and Clinical Practice. Springer. 2016, 11-25. |
[66] |
Owji MS, Varedi M, Naghibalhossaini F, et al. Thyroid function modulates lung fluid and alveolar viscoelasticity in mechanically ventilated rat. J Surg Res, 2020; 253, 272−9. doi: 10.1016/j.jss.2020.03.060 |
[67] |
Schlenker EH. Effects of hypothyroidism on the respiratory system and control of breathing: human studies and animal models. Respir Physiol Neurobiol, 2012; 181, 123−31. doi: 10.1016/j.resp.2012.02.007 |
[68] |
Wang ZX, Lu B, Wu MH, et al. Reduced sensitivity to thyroid hormones is associated with lung function in euthyroid individuals. Heliyon, 2024; 10, e30309. doi: 10.1016/j.heliyon.2024.e30309 |
[69] |
Akter P, Begum S, Ali T, et al. FVC, FEV1 and FEV1/FVC% in hypothyroid female and their relationships with thyroid hormones. J Bangladesh Soc Physiol, 2011; 6, 45−51. |
[70] |
Bassi R, Dhillon SV, Sharma S, et al. Effect of thyroid hormone replacement on respiratory function tests in hypothyroid women. Pak J Physiol, 2012; 8, 20−3. |
[71] |
Jara EL, Muñoz-Durango N, Llanos C, et al. Modulating the function of the immune system by thyroid hormones and thyrotropin. Immunol Lett, 2017; 184, 76−83. doi: 10.1016/j.imlet.2017.02.010 |
[72] |
Lai R, Yin BZ, Feng ZY, et al. The causal relationship between 41 inflammatory cytokines and hypothyroidism: bidirectional two-sample Mendelian randomization study. Front Endocrinol (Lausanne), 2023; 14, 1332383. |
[73] |
Perrotta C, Buldorini M, Assi E, et al. The thyroid hormone triiodothyronine controls macrophage maturation and functions: protective role during inflammation. Am J Pathol, 2014; 184, 230−47. doi: 10.1016/j.ajpath.2013.10.006 |