[1] |
Parkhill J, Wren BW, Mungall K, et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature, 2000; 403, 665−8. doi: 10.1038/35001088 |
[2] |
Yu RK, Usuki S, Ariga T. Gangliosidé molecular mimicry and its pathological roles in Guillain-Barre syndrome and related diseases. Infect Immun, 2006; 74, 6517−27. doi: 10.1128/IAI.00967-06 |
[3] |
Ren FZ, Li XF, Tang HY, et al. Insights into the impact of flhF inactivation on Campylobacter jejuni colonization of chick and mice gut. BMC Microbiol, 2018; 18, 149. doi: 10.1186/s12866-018-1318-1 |
[4] |
Black RE, Levine MM, Clements ML, et al. Experimental Campylobacter jejuni infection in humans. J Infect Dis, 1988; 157, 472−9. doi: 10.1093/infdis/157.3.472 |
[5] |
Zebian N, Merkx-Jacques A, Pittock PP, et al. Comprehensive analysis of flagellin glycosylation in Campylobacter jejuni NCTC 11168 reveals incorporation of legionaminic acid and its importance for host colonization. Glycobiology, 2016; 26, 386−97. doi: 10.1093/glycob/cwv104 |
[6] |
Jagannathan A, Constantinidou C, Penn CW. Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni. J Bacteriol, 2001; 183, 2937−42. doi: 10.1128/JB.183.9.2937-2942.2001 |
[7] |
Carrillo CD, Taboada E, Nash JHE, et al. Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J Biol Chem, 2004; 279, 20327−38. doi: 10.1074/jbc.M401134200 |
[8] |
Kim JS, Park C, Kim YJ. Role of flgA for flagellar biosynthesis and biofilm formation of Campylobacter jejuni NCTC11168. J Microbiol Biotechnol, 2015; 25, 1871−9. doi: 10.4014/jmb.1504.04080 |
[9] |
Sher AA, Jerome JP, Bell JA, et al. Experimental evolution of Campylobacter jejuni leads to loss of motility, rpoN (σ54) deletion and genome reduction. Front Microbiol, 2020; 11, 579989. doi: 10.3389/fmicb.2020.579989 |
[10] |
Abdelmageed HA, Mandour AS, El Gedawy AA, et al. Characterization of Campylobacter jejuni isolated from dogs and humans using flaA-SVR fragment sequencing in Ismailia, Egypt. Comp Immunol Microbiol Infect Dis, 2021; 77, 101675. doi: 10.1016/j.cimid.2021.101675 |
[11] |
McMurry JL, Van Arnam JS, Kihara M, et al. Analysis of the cytoplasmic domains of Salmonella FlhA and interactions with components of the flagellar export machinery. J Bacteriol, 2004; 186, 7586−92. doi: 10.1128/JB.186.22.7586-7592.2004 |
[12] |
Minamino T, González-Pedrajo B, Kihara M, et al. The ATPase FliI can interact with the type III flagellar protein export apparatus in the absence of its regulator, FliH. J Bacteriol, 2003; 185, 3983−8. doi: 10.1128/JB.185.13.3983-3988.2003 |
[13] |
Minamino T, Namba K. Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature, 2008; 451, 485−8. doi: 10.1038/nature06449 |
[14] |
Kihara M, Minamino T, Yamaguchi S, et al. Intergenic suppression between the flagellar MS ring protein FliF of Salmonella and FlhA, a membrane component of its export apparatus. J Bacteriol, 2001; 183, 1655−62. doi: 10.1128/JB.183.5.1655-1662.2001 |
[15] |
Minamino T, Yoshimura SDJ, Morimoto YV, et al. Roles of the extreme N-terminal region of FliH for efficient localization of the FliH-FliI complex to the bacterial flagellar type III export apparatus. Mol Microbiol, 2009; 74, 1471−83. doi: 10.1111/j.1365-2958.2009.06946.x |
[16] |
Saijo-Hamano Y, Minamino T, Macnab RM, et al. Structural and functional analysis of the C-terminal cytoplasmic domain of FlhA, an integral membrane component of the type III flagellar protein export apparatus in Salmonella. J Mol Biol, 2004; 343, 457−66. doi: 10.1016/j.jmb.2004.08.067 |
[17] |
Moore SA, Jia YH. Structure of the cytoplasmic domain of the flagellar secretion apparatus component FlhA from Helicobacter pylori. J Biol Chem, 2010; 285, 21060−9. doi: 10.1074/jbc.M110.119412 |
[18] |
Ayna A, Moody PCE. Activity of fructose-1, 6-bisphosphatase from Campylobacter jejuni. Biochem Cell Biol, 2020; 98, 518−24. doi: 10.1139/bcb-2020-0021 |
[19] |
Kalmokoff M, Lanthier P, Tremblay TL, et al. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol, 2006; 188, 4312−20. doi: 10.1128/JB.01975-05 |
[20] |
Hoeflinger JL, Miller MJ. Cronobacter sakazakii ATCC 29544 autoaggregation requires FliC flagellation, not motility. Front Microbiol, 2017; 8, 301. |
[21] |
Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis, 2009; 30, S162−73. doi: 10.1002/elps.200900140 |
[22] |
Bertoni M, Kiefer F, Biasini M, et al. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep, 2017; 7, 10480. doi: 10.1038/s41598-017-09654-8 |
[23] |
Bienert S, Waterhouse A, de Beer TAP, et al. The SWISS-MODEL repository-new features and functionality. Nucleic Acids Res, 2017; 45, D313−9. doi: 10.1093/nar/gkw1132 |
[24] |
Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018; 46, W296−303. doi: 10.1093/nar/gky427 |
[25] |
Studer G, Rempfer C, Waterhouse AM, et al. QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics, 2020; 36, 1765−71. doi: 10.1093/bioinformatics/btz828 |
[26] |
Hirano T, Mizuno S, Aizawa SI, et al. Mutations in flk, flgG, flhA, and flhE that affect the flagellar type III secretion specificity switch in Salmonella enterica. J Bacteriol, 2009; 191, 3938−49. doi: 10.1128/JB.01811-08 |
[27] |
Gaynor EC, Cawthraw S, Manning G, et al. The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J Bacteriol, 2004; 186, 503−17. doi: 10.1128/JB.186.2.503-517.2004 |
[28] |
Gundogdu O, Bentley SD, Holden MT, et al. Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics, 2007; 8, 162. doi: 10.1186/1471-2164-8-162 |
[29] |
Moe KK, Mimura J, Ohnishi T, et al. The mode of biofilm formation on smooth surfaces by Campylobacter jejuni. J Vet Med Sci, 2010; 72, 411−6. doi: 10.1292/jvms.09-0339 |
[30] |
Misawa N, Blaser MJ. Detection and characterization of autoagglutination activity by Campylobacter jejuni. Infect Immun, 2000; 68, 6168−75. doi: 10.1128/IAI.68.11.6168-6175.2000 |
[31] |
Irons J, Sacher JC, Szymanski CM, et al. Cj1388 is a RidA homolog and is required for flagella biosynthesis and/or function in Campylobacter jejuni. Front Microbiol, 2019; 10, 2058. doi: 10.3389/fmicb.2019.02058 |
[32] |
Guerry P. Campylobacter flagella: not just for motility. Trends Microbiol, 2007; 15, 456−61. doi: 10.1016/j.tim.2007.09.006 |
[33] |
Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev, 1998; 62, 379−433. doi: 10.1128/MMBR.62.2.379-433.1998 |
[34] |
Bange G, Kümmerer N, Engel C, et al. FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system. Proc Natl Acad Sci USA, 2010; 107, 11295−300. doi: 10.1073/pnas.1001383107 |
[35] |
Minamino T, Shimada M, Okabe M, et al. Role of the C-terminal cytoplasmic domain of FlhA in bacterial flagellar type III protein export. J Bacteriol, 2010; 192, 1929−36. doi: 10.1128/JB.01328-09 |
[36] |
Saijo-Hamano Y, Imada K, Minamino T, et al. Structure of the cytoplasmic domain of FlhA and implication for flagellar type III protein export. Mol Microbiol, 2010; 76, 260−8. doi: 10.1111/j.1365-2958.2010.07097.x |
[37] |
Boll JM, Hendrixson DR. A regulatory checkpoint during flagellar biogenesis in Campylobacter jejuni initiates signal transduction to activate transcription of flagellar genes. mBio, 2013; 4, e00432−13. |
[38] |
Ibuki T, Uchida Y, Hironaka Y, et al. Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus. J Bacteriol, 2013; 195, 466−73. doi: 10.1128/JB.01711-12 |
[39] |
Terahara N, Inoue Y, Kodera N, et al. Insight into structural remodeling of the FlhA ring responsible for bacterial flagellar type III protein export. Sci Adv, 2018; 4, eaao7054. doi: 10.1126/sciadv.aao7054 |
[40] |
Kinoshita M, Hara N, Imada K, et al. Interactions of bacterial flagellar chaperone-substrate complexes with FlhA contribute to co-ordinating assembly of the flagellar filament. Mol Microbiol, 2013; 90, 1249−61. doi: 10.1111/mmi.12430 |
[41] |
Minamino T, Macnab RM. Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol, 1999; 181, 1388−94. doi: 10.1128/JB.181.5.1388-1394.1999 |
[42] |
Carpenter PB, Ordal GW. Bacillus subtilis FlhA: a flagellar protein related to a new family of signal-transducing receptors. Mol Microbiol, 1993; 7, 735−43. doi: 10.1111/j.1365-2958.1993.tb01164.x |
[43] |
Barker CS, Inoue T, Meshcheryakova IV, et al. Function of the conserved FHIPEP domain of the flagellar type III export apparatus, protein FlhA. Mol Microbiol, 2016; 100, 278−88. doi: 10.1111/mmi.13315 |
[44] |
Hara N, Namba K, Minamino T. Genetic characterization of conserved charged residues in the bacterial flagellar type III export protein FlhA. PLoS One, 2011; 6, e22417. doi: 10.1371/journal.pone.0022417 |
[45] |
Eisenberg D. The discovery of the α-helix and β-sheet, the principal structural features of proteins. Proc Natl Acad Sci USA, 2003; 100, 11207−10. doi: 10.1073/pnas.2034522100 |
[46] |
Holcomb M, Adhikary R, Zimmermann J, et al. Topological evidence of previously overlooked Ni+1-H···Ni H-bonds and their contribution to protein structure and stability. J Phys Chem A, 2018; 122, 446−50. doi: 10.1021/acs.jpca.7b11013 |
[47] |
Zhu K, González-Pedrajo B, Macnab RM. Interactions among membrane and soluble components of the flagellar export apparatus of Salmonella. Biochemistry, 2002; 41, 9516−24. doi: 10.1021/bi0203280 |