[1] |
GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet, 2018; 392, 1859−922. doi: 10.1016/S0140-6736(18)32335-3 |
[2] |
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol, 2019; 18, 459−80. doi: 10.1016/S1474-4422(18)30499-X |
[3] |
DeTure MA, Dickson DW. The neuropathological diagnosis of alzheimer's disease. Mol Neurodegener, 2019; 14, 32. doi: 10.1186/s13024-019-0333-5 |
[4] |
Bellou V, Belbasis L, Tzoulaki I, et al. Systematic evaluation of the associations between environmental risk factors and dementia: an umbrella review of systematic reviews and meta-analyses. Alzheimers Dement, 2017; 13, 406−18. doi: 10.1016/j.jalz.2016.07.152 |
[5] |
Sims R, Hill M, Williams J. The multiplex model of the genetics of alzheimer's disease. Nat Neurosci, 2020; 23, 311−22. doi: 10.1038/s41593-020-0599-5 |
[6] |
Hodson R. Inflammatory bowel disease. Nature, 2016; 540, S97. doi: 10.1038/540S97a |
[7] |
Wilson JC, Furlano RI, Jick SS, et al. Inflammatory bowel disease and the risk of autoimmune diseases. J Crohns Colitis, 2016; 10, 186−93. doi: 10.1093/ecco-jcc/jjv193 |
[8] |
Lakhan SE, Kirchgessner A. Neuroinflammation in inflammatory bowel disease. J Neuroinflammation, 2010; 7, 37. doi: 10.1186/1742-2094-7-37 |
[9] |
Zhang B, Wang HE, Bai YM, et al. Inflammatory bowel disease is associated with higher dementia risk: a nationwide longitudinal study. Gut, 2021; 70, 85−91. doi: 10.1136/gutjnl-2020-320789 |
[10] |
Zingel R, Bohlken J, Kostev K. Association between inflammatory bowel disease and dementia: a retrospective cohort study. J Alzheimers Dis, 2021; 80, 1471−8. doi: 10.3233/JAD-210103 |
[11] |
Kim GH, Lee YC, Kim TJ, et al. Risk of neurodegenerative diseases in patients with inflammatory bowel disease: a nationwide population-based cohort study. J Crohns Colitis, 2022; 16, 436−43. doi: 10.1093/ecco-jcc/jjab162 |
[12] |
Li XJ, Sundquist J, Zöller B, et al. Dementia and alzheimer's disease risks in patients with autoimmune disorders. Geriatr Gerontol Int, 2018; 18, 1350−5. doi: 10.1111/ggi.13488 |
[13] |
Sun YH, Geng JW, Chen XJ, et al. Association between inflammatory bowel disease and dementia: a longitudinal cohort study. Inflamm Bowel Dis, 2022; 28, 1520−6. doi: 10.1093/ibd/izab300 |
[14] |
Davies NM, Holmes MV, Davey Smith G. Reading mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ, 2018; 362, k601. |
[15] |
Larsson SC, Traylor M, Malik R, et al. Modifiable pathways in alzheimer's disease: mendelian randomisation analysis. BMJ, 2017; 359, j5375. |
[16] |
Guo XZ, Chong L, Zhang X, et al. Letter to the editor: genetically determined IBD is associated with decreased risk of alzheimer's disease: a mendelian randomisation study. Gut, 2022; 71, 1688−9. |
[17] |
Jiang L, Li JC, Shen L, et al. Association between inflammatory bowel disease and alzheimer's disease: multivariable and bidirectional mendelian randomisation analyses. Gut, 2023; 72, 1797−9. doi: 10.1136/gutjnl-2022-327860 |
[18] |
Huang J, Su BW, Karhunen V, et al. Inflammatory diseases, inflammatory biomarkers, and alzheimer disease: an observational analysis and mendelian randomization. Neurology, 2023; 100, e568−81. |
[19] |
Morrison J, Knoblauch N, Marcus JH, et al. Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat Genet, 2020; 52, 740−7. doi: 10.1038/s41588-020-0631-4 |
[20] |
Austin-Zimmerman I, Levey DF, Giannakopoulou O, et al. Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration. Nat Commun, 2023; 14, 6059. doi: 10.1038/s41467-023-41249-y |
[21] |
Prince C, Sharp GC, Howe LD, et al. The relationships between women's reproductive factors: a mendelian randomisation analysis. BMC Med, 2022; 20, 103. doi: 10.1186/s12916-022-02293-5 |
[22] |
Hu JY, Lu JW, Lu QH, et al. Mendelian randomization and colocalization analyses reveal an association between short sleep duration or morning chronotype and altered leukocyte telomere length. Commun Biol, 2023; 6, 1014. doi: 10.1038/s42003-023-05397-7 |
[23] |
Zuber V, Grinberg NF, Gill D, et al. Combining evidence from Mendelian randomization and colocalization: review and comparison of approaches. Am J Hum Genet, 2022; 109, 767−82. doi: 10.1016/j.ajhg.2022.04.001 |
[24] |
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 2021; 372, n71. |
[25] |
Schünemann HJ, Mustafa R, Brozek J, et al. GRADE Guidelines: 16. GRADE evidence to decision frameworks for tests in clinical practice and public health. J Clin Epidemiol, 2016; 76, 89−98. doi: 10.1016/j.jclinepi.2016.01.032 |
[26] |
Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ, 2021; 375, n2233. |
[27] |
Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med, 2008; 27, 1133−63. doi: 10.1002/sim.3034 |
[28] |
de Lange KM, Moutsianas L, Lee JC, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet, 2017; 49, 256−61. doi: 10.1038/ng.3760 |
[29] |
Jansen IE, Savage JE, Watanabe K, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing alzheimer’s disease risk. Nat Genet, 2019; 51, 404−13. doi: 10.1038/s41588-018-0311-9 |
[30] |
Bulik-Sullivan B, Finucane HK, Anttila V, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet, 2015; 47, 1236−41. doi: 10.1038/ng.3406 |
[31] |
Giambartolomei C, Vukcevic D, Schadt EE, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet, 2014; 10, e1004383. doi: 10.1371/journal.pgen.1004383 |
[32] |
Bernstein CN, Nugent Z, Shaffer S, et al. Comorbidity before and after a diagnosis of inflammatory bowel disease. Aliment Pharmacol Ther, 2021; 54, 637−51. doi: 10.1111/apt.16444 |
[33] |
Aggarwal M, Alkhayyat M, Abou Saleh M, et al. Alzheimer disease occurs more frequently in patients with inflammatory bowel disease: insight from a nationwide study. J Clin Gastroenterol, 2023; 57, 501−7. doi: 10.1097/MCG.0000000000001714 |
[34] |
Garcia-Argibay M, Hiyoshi A, Montgomery S. Association between dementia risk and ulcerative colitis, with and without colectomy: a Swedish population-based register study. BMJ Open, 2023; 13, e074110. doi: 10.1136/bmjopen-2023-074110 |
[35] |
Rønnow Sand J, Troelsen FS, Horváth-Puhó E, et al. Risk of dementia in patients with inflammatory bowel disease: a Danish population-based study. Aliment Pharmacol Ther, 2022; 56, 831−43. doi: 10.1111/apt.17119 |
[36] |
Fu PF, Gao M, Yung KKL. Association of intestinal disorders with parkinson's disease and alzheimer's disease: a systematic review and meta-analysis. ACS Chem Neurosci, 2020; 11, 395−405. doi: 10.1021/acschemneuro.9b00607 |
[37] |
Liu MS, Li DX, Hong X, et al. Increased risk for dementia in patients with inflammatory bowel disease: a systematic review and meta-analysis of population-based studies. Front Neurol, 2022; 13, 813266. doi: 10.3389/fneur.2022.813266 |
[38] |
Liu NY, Wang Y, He LY, et al. Inflammatory bowel disease and risk of dementia: an updated meta-analysis. Front Aging Neurosci, 2022; 14, 962681. doi: 10.3389/fnagi.2022.962681 |
[39] |
Zamani M, Ebrahimtabar F, Alizadeh-Tabari S, et al. Risk of common neurological disorders in adult patients with inflammatory bowel disease: a systematic review and meta-analysis. Inflamm Bowel Dis, 2024; izae012. |
[40] |
Zhang MN, Shi YD, Jiang HY. The risk of dementia in patients with inflammatory bowel disease: a systematic review and meta-analysis. Int J Colorectal Dis, 2022; 37, 769−75. doi: 10.1007/s00384-022-04131-9 |
[41] |
Yuan S, Dan LT, Zhang Y, et al. Digestive system diseases, genetic risk, and incident dementia: a prospective cohort study. Am J Prev Med, 2024; 66, 516−25. doi: 10.1016/j.amepre.2023.10.017 |
[42] |
Raskov H, Burcharth J, Pommergaard HC, et al. Irritable bowel syndrome, the microbiota and the gut-brain axis. Gut Microbes, 2016; 7, 365−83. doi: 10.1080/19490976.2016.1218585 |
[43] |
Osadchiy V, Martin CR, Mayer EA. The gut-brain axis and the microbiome: mechanisms and clinical implications. Clin Gastroenterol Hepatol, 2019; 17, 322−32. doi: 10.1016/j.cgh.2018.10.002 |
[44] |
Mayer EA. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci, 2011; 12, 453−66. |
[45] |
Bonaz BL, Bernstein CN. Brain-gut interactions in inflammatory bowel disease. Gastroenterology, 2013; 144, 36−49. doi: 10.1053/j.gastro.2012.10.003 |
[46] |
Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson's disease. Cell, 2016; 167, 1469-80. e12. |
[47] |
Rea K, Dinan TG, Cryan JF. The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress, 2016; 4, 23−33. doi: 10.1016/j.ynstr.2016.03.001 |
[48] |
Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep, 2017; 17, 94. doi: 10.1007/s11910-017-0802-6 |
[49] |
Fang P, Kazmi SA, Jameson KG, et al. The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe, 2020; 28, 201−22. doi: 10.1016/j.chom.2020.06.008 |
[50] |
Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol, 2020; 17, 223−37. doi: 10.1038/s41575-019-0258-z |
[51] |
Wang XY, Sun GQ, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit alzheimer's disease progression. Cell Res, 2019; 29, 787−803. doi: 10.1038/s41422-019-0216-x |
[52] |
Piovani D, Danese S, Peyrin-Biroulet L, et al. Environmental risk factors for inflamm bowel dis: an umbrella review of meta-analyses. Gastroenterology, 2019; 157, 647-59. e4. |
[53] |
Narula N, Wong ECL, Dehghan M, et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. BMJ, 2021; 374, n1554. |
[54] |
Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, et al. Western diet as a trigger of alzheimer's disease: from metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev, 2021; 70, 101397. doi: 10.1016/j.arr.2021.101397 |