[1] Radke EG, Braun JM, Meeker JD, et al. Phthalate exposure and male reproductive outcomes: a systematic review of the human epidemiological evidence. Environ Int, 2018; 121, 764−93. doi:  10.1016/j.envint.2018.07.029
[2] Dutta S, Haggerty DK, Rappolee DA, et al. Phthalate exposure and long-term epigenomic consequences: a review. Front Genet, 2020; 11, 405. doi:  10.3389/fgene.2020.00405
[3] Zhang WZ, Zheng XW, Gu P, et al. Distribution and risk assessment of phthalates in water and sediment of the Pearl River Delta. Environ Sci Pollut Res Int, 2020; 27, 12550−65. doi:  10.1007/s11356-019-06819-y
[4] Zhou B, Zhao LX, Wang YB, et al. Spatial distribution of phthalate esters and the associated response of enzyme activities and microbial community composition in typical plastic-shed vegetable soils in China. Ecotoxicol Environ Saf, 2020; 195, 110495. doi:  10.1016/j.ecoenv.2020.110495
[5] Liu H, Liang HC, Liang Y, et al. Distribution of phthalate esters in alluvial sediment: a case study at JiangHan Plain, Central China. Chemosphere, 2010; 78, 382−8. doi:  10.1016/j.chemosphere.2009.11.009
[6] Koch HM, Lorber M, Christensen KLY, et al. Identifying sources of phthalate exposure with human biomonitoring: results of a 48 h fasting study with urine collection and personal activity patterns. Int J Hyg Environ Health, 2013; 216, 672−81. doi:  10.1016/j.ijheh.2012.12.002
[7] Li XH, Mo JY, Zhu QQ, et al. The structure-activity relationship (SAR) for phthalate-mediated developmental and reproductive toxicity in males. Chemosphere, 2019; 223, 504−13. doi:  10.1016/j.chemosphere.2019.02.090
[8] Liu MQ, Chen HQ, Dai HP, et al. Effects of bis(2-butoxyethyl) phthalate exposure in utero on the development of fetal Leydig cells in rats. Toxicol Lett, 2021; 351, 65−77. doi:  10.1016/j.toxlet.2021.08.008
[9] Ge RS, Hardy MP. Variation in the end products of androgen biosynthesis and metabolism during postnatal differentiation of rat Leydig cells. Endocrinology, 1998; 139, 3787−95. doi:  10.1210/endo.139.9.6183
[10] Ye LP, Li XH, Li LX, et al. Insights into the Development of the adult Leydig cell lineage from stem leydig cells. Front Physiol, 2017; 8, 430. doi:  10.3389/fphys.2017.00430
[11] Batista-Silva H, Dambrós BF, Rodrigues K, et al. Acute exposure to bis(2-ethylhexyl)phthalate disrupts calcium homeostasis, energy metabolism and induces oxidative stress in the testis of Danio rerio. Biochimie, 2020; 175, 23−33. doi:  10.1016/j.biochi.2020.05.002
[12] Nelli G, Pamanji SR. Di-n-butyl phthalate prompts interruption of spermatogenesis, steroidogenesis, and fertility associated with increased testicular oxidative stress in adult male rats. Environ Sci Pollut Res Int, 2017; 24, 18563−74. doi:  10.1007/s11356-017-9478-3
[13] Zhou DX, Wang HX, Zhang J, et al. Di-n-butyl phthalate (DBP) exposure induces oxidative damage in testes of adult rats. Syst Biol Reprod Med, 2010; 56, 413−9. doi:  10.3109/19396368.2010.509902
[14] Colón E, Zaman F, Axelson M, et al. Insulin-like growth factor-I is an important antiapoptotic factor for rat leydig cells during postnatal development. Endocrinology, 2007; 148, 128−39. doi:  10.1210/en.2006-0835
[15] Martinot E, Boerboom D. Slit/robo signaling regulates Leydig cell steroidogenesis. Cell Commun Signaling, 2021; 19, 8. doi:  10.1186/s12964-020-00696-6
[16] Matzkin ME, Yamashita S, Ascoli M. The ERK1/2 pathway regulates testosterone synthesis by coordinately regulating the expression of steroidogenic genes in Leydig cells. Mol Cell Endocrinol, 2013; 370, 130−7. doi:  10.1016/j.mce.2013.02.017
[17] Yu YG, Li ZQ, Ma FF, et al. Neurotrophin-3 stimulates stem Leydig cell proliferation during regeneration in rats. J Cell Mol Med, 2020; 24, 13679−89. doi:  10.1111/jcmm.15886
[18] Zhang S, Chen XX, Li XH, et al. Effects of in utero exposure to diisodecyl phthalate on fetal testicular cells in rats. Toxicol Lett, 2020; 330, 23−9. doi:  10.1016/j.toxlet.2020.04.024
[19] Chen HQ, Xin X, Liu MQ, et al. In utero exposure to dipentyl phthalate disrupts fetal and adult Leydig cell development. Toxicol Appl Pharmacol, 2021; 419, 115514. doi:  10.1016/j.taap.2021.115514
[20] Guo JJ, Zhou HY, Su ZJ, et al. Comparison of cell types in the rat Leydig cell lineage after ethane dimethanesulfonate treatment. Reproduction, 2013; 145, 371−80. doi:  10.1530/REP-12-0465
[21] Vaillant S, Magre S, Dorizzi M, et al. Expression of AMH, SF1, and SOX9 in gonads of genetic female chickens during sex reversal induced by an aromatase inhibitor. Dev Dyn, 2001; 222, 228−37. doi:  10.1002/dvdy.1190
[22] Akingbemi BT, Ge RS, Klinefelter GR, et al. Phthalate-induced Leydig cell hyperplasia is associated with multiple endocrine disturbances. Proc Natl Acad Sci USA, 2004; 101, 775−80. doi:  10.1073/pnas.0305977101
[23] Shan LX, Phillips DM, Bardin CW, et al. Differential regulation of steroidogenic enzymes during differentiation optimizes testosterone production by adult rat Leydig cells. Endocrinology, 1993; 133, 2277−83. doi:  10.1210/endo.133.5.8404681
[24] Li HT, Wen ZN, Ni CB, et al. Perfluorododecanoic acid delays Leydig cell regeneration from stem cells in adult rats. Food Chem Toxicol, 2021; 151, 112152. doi:  10.1016/j.fct.2021.112152
[25] Hu GX, Li JW, Shan YY, et al. In utero combined di-(2-ethylhexyl) phthalate and diethyl phthalate exposure cumulatively impairs rat fetal Leydig cell development. Toxicology, 2018; 395, 23−33. doi:  10.1016/j.tox.2018.01.002
[26] Chen XW, Dong YY, Tian EP, et al. 4-Bromodiphenyl ether delays pubertal Leydig cell development in rats. Chemosphere, 2018; 211, 986−97. doi:  10.1016/j.chemosphere.2018.08.008
[27] Di GQ, Xiang JL, Dong L, et al. Testosterone synthesis in testicular Leydig cells after long-term exposure to a static electric field (SEF). Toxicology, 2021; 458, 152836. doi:  10.1016/j.tox.2021.152836
[28] Payne AH, Downing JR, Wong KL. Luteinizing hormone receptors and testosterone synthesis in two distinct populations of Ley dig cells. Endocrinology, 1980; 106, 1424−9. doi:  10.1210/endo-106-5-1424
[29] Wang YY, Dong YY, Wu SW, et al. Acephate interferes with androgen synthesis in rat immature Leydig cells. Chemosphere, 2020; 245, 125597. doi:  10.1016/j.chemosphere.2019.125597
[30] Koopman P. Sry and Sox9: mammalian testis-determining genes. Cell Mol Life Sci, 1999; 55, 839−56.
[31] Orth JM. Proliferation of Sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study. Anat Rec, 1982; 203, 485−92. doi:  10.1002/ar.1092030408
[32] Ge RS, Dong Q, Sottas CM, et al. Gene expression in rat leydig cells during development from the progenitor to adult stage: a cluster analysis. Biol Reprod, 2005; 72, 1405−15. doi:  10.1095/biolreprod.104.037499
[33] Bao AM, Man XM, Guo XJ, et al. Effects of di-n-butyl phthalate on male rat reproduction following pubertal exposure. Asian J Androl, 2011; 13, 702−9. doi:  10.1038/aja.2011.76
[34] Janjic MM, Stojilkovic SS, Bjelobaba I. Intrinsic and regulated gonadotropin-releasing hormone receptor gene transcription in mammalian pituitary gonadotrophs. Front Endocrinol (Lausanne), 2017; 8, 221. doi:  10.3389/fendo.2017.00221
[35] Li XH, Tian EP, Wang YY, et al. Stem Leydig cells: current research and future prospects of regenerative medicine of male reproductive health. Semin Cell Dev Biol, 2022; 121, 63−70. doi:  10.1016/j.semcdb.2021.05.007
[36] Clark AM, Garland KK, Russell LD. Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod, 2000; 63, 1825−38. doi:  10.1095/biolreprod63.6.1825
[37] Zhao Y, Ao H, Chen L, et al. Mono-(2-ethylhexyl) phthalate affects the steroidogenesis in rat Leydig cells through provoking ROS perturbation. Toxicol in Vitro, 2012; 26, 950−5. doi:  10.1016/j.tiv.2012.04.003
[38] Zhou L, Beattie MC, Lin CY, et al. Oxidative stress and phthalate-induced down-regulation of steroidogenesis in MA-10 Leydig cells. Reprod Toxicol, 2013; 42, 95−101. doi:  10.1016/j.reprotox.2013.07.025
[39] Sedha S, Kumar S, Shukla S. Role of oxidative stress in male reproductive dysfunctions with reference to phthalate compounds. Urol J, 2015; 12, 2304−16.
[40] Zirkin BR, Papadopoulos V. Leydig cells: formation, function, and regulation. Biol Reprod, 2018; 99, 101−11. doi:  10.1093/biolre/ioy059
[41] Chung JY, Chen HL, Zirkin B. Sirt1 and Nrf2: regulation of Leydig cell oxidant/antioxidant intracellular environment and steroid formation. Biol Reprod, 2021; 105, 1307−16. doi:  10.1093/biolre/ioab150
[42] Lv Y, Li LL, Fang YH, et al. In utero exposure to bisphenol A disrupts fetal testis development in rats. Environ Pollut, 2019; 246, 217−24. doi:  10.1016/j.envpol.2018.12.006
[43] Spitz AZ, Gavathiotis E. Physiological and pharmacological modulation of BAX. Trends Pharmacol Sci, 2022; 43, 206−20. doi:  10.1016/j.tips.2021.11.001
[44] Dummler B, Tschopp O, Hynx D, et al. Life with a single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Mol Cell Biol, 2006; 26, 8042−51. doi:  10.1128/MCB.00722-06
[45] Chen WS, Xu PZ, Gottlob K, et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the akt1 gene. Genes Dev, 2001; 15, 2203−8. doi:  10.1101/gad.913901
[46] Chen FL, Wang YJ, Liu QG, et al. ERO1α promotes testosterone secretion in hCG-stimulated mouse Leydig cells via activation of the PI3K/AKT/mTOR signaling pathway. J Cell Physiol, 2020; 235, 5666−78. doi:  10.1002/jcp.29498
[47] Schmeisser K, Parker JA. Pleiotropic effects of mTOR and autophagy during development and aging. Front Cell Dev Biol, 2019; 7, 192. doi:  10.3389/fcell.2019.00192
[48] Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest, 2015; 125, 25−32. doi:  10.1172/JCI73939
[49] Chen YB, Wang J, Xu DH, et al. m6A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells. Autophagy, 2021; 17, 457−75. doi:  10.1080/15548627.2020.1720431
[50] Gao FY, Li GP, Liu C, et al. Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells. J Cell Biol, 2018; 217, 2103−19. doi:  10.1083/jcb.201710078
[51] Yan HN, Li CC, Zou C, et al. Perfluoroundecanoic acid inhibits Leydig cell development in pubertal male rats via inducing oxidative stress and autophagy. Toxicol Appl Pharmacol, 2021; 415, 115440. doi:  10.1016/j.taap.2021.115440
[52] Yang HQ, Wang H, Liu YB, et al. The PI3K/Akt/mTOR signaling pathway plays a role in regulating aconitine-induced autophagy in mouse liver. Res Vet Sci, 2019; 124, 317−20. doi:  10.1016/j.rvsc.2019.04.016
[53] Valenzuela-Leon P, Dobrinski I. Exposure to phthalate esters induces an autophagic response in male germ cells. Environ Epigenet, 2017; 3, dvx010.
[54] Zhou XL, Zhang ZG, Shi H, et al. Effects of Lycium barbarum glycopeptide on renal and testicular injury induced by di(2-ethylhexyl) phthalate. Cell Stress Chaperones, 2022; 27, 257−71. doi:  10.1007/s12192-022-01266-0
[55] Zhu XY, Hu ME, Ji HS, et al. Exposure to di-n-octyl phthalate during puberty induces hypergonadotropic hypogonadism caused by Leydig cell hyperplasia but reduced steroidogenic function in male rats. Ecotoxicol Environ Saf, 2021; 208, 111432. doi:  10.1016/j.ecoenv.2020.111432
[56] Wang YY, Ge F, Li XH, et al. Propofol inhibits androgen production in rat immature leydig cells. Front Pharmacol, 2019; 10, 760. doi:  10.3389/fphar.2019.00760
[57] Souder DC, Anderson RM. An expanding GSK3 network: implications for aging research. Geroscience, 2019; 41, 369−82. doi:  10.1007/s11357-019-00085-z
[58] Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther, 2015; 148, 114−31. doi:  10.1016/j.pharmthera.2014.11.016
[59] Yuan KM, Zhao BH, Li XW, et al. Effects of phthalates on 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase 3 activities in human and rat testes. Chem Biol Interact, 2012; 195, 180−8. doi:  10.1016/j.cbi.2011.12.008
[60] Zhang XF, Qu NQ, Zheng J, et al. Di (n-butyl) phthalate inhibits testosterone synthesis through a glucocorticoid-mediated pathway in rats. Int J Toxicol, 2009; 28, 448−56. doi:  10.1177/1091581809342596
[61] van den Driesche S, Walker M, McKinnell C, et al. Proposed role for COUP-TFII in regulating fetal Leydig cell steroidogenesis, perturbation of which leads to masculinization disorders in rodents. PLoS One, 2012; 7, e37064. doi:  10.1371/journal.pone.0037064
[62] Tomonari V, Kurata Y, David RM, et al. Effect of di(2-ethylhexyl) phthalate (DEHP) on genital organs from juvenile common marmosets: I. Morphological and biochemical investigation in 65-week toxicity study. J Toxicol Environ Health A, 2006; 69, 1651−72. doi:  10.1080/15287390600630054
[63] Kessler W, Numtip W, Grote K, et al. Blood burden of di(2-ethylhexyl) phthalate and its primary metabolite mono(2-ethylhexyl) phthalate in pregnant and nonpregnant rats and marmosets. Toxicol Appl Pharmacol, 2004; 195, 142−53. doi:  10.1016/j.taap.2003.11.014
[64] Kessler W, Numtip W, Völkel W, et al. Kinetics of di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate in blood and of DEHP metabolites in urine of male volunteers after single ingestion of ring-deuterated DEHP. Toxicol Appl Pharmacol, 2012; 264, 284−91. doi:  10.1016/j.taap.2012.08.009
[65] Hauser R, Meeker JD, Duty S, et al. Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology, 2006; 17, 682−91. doi:  10.1097/01.ede.0000235996.89953.d7
[66] Wang YX, Zeng Q, Sun Y, et al. Phthalate exposure in association with serum hormone levels, sperm DNA damage and spermatozoa apoptosis: a cross-sectional study in China. Environ Res, 2016; 150, 557−65. doi:  10.1016/j.envres.2015.11.023
[67] Xu TY, Hu JB, Gao HS, et al. Determination and analysis of 16 kinds of phthalates concentration in semen from infertile men. Chin J Clin Lab Sci, 2013; 31, 51−3. (In Chinese
[68] Lin H, Ge RS, Chen GR, et al. Involvement of testicular growth factors in fetal Leydig cell aggregation after exposure to phthalate in utero. Proc Natl Acad Sci USA, 2008; 105, 7218−22. doi:  10.1073/pnas.0709260105
[69] Harley KG, Berger KP, Kogut K, et al. Association of phthalates, parabens and phenols found in personal care products with pubertal timing in girls and boys. Hum Reprod, 2019; 34, 109−17. doi:  10.1093/humrep/dey337
[70] Liu T, Wang YZ, Yang MD, et al. Di-(2-ethylhexyl) phthalate induces precocious puberty in adolescent female rats. Iran J Basic Med Sci, 2018; 21, 848−55.