[1] Balakrishnan VS. Who launches global initiative for arboviral diseases. The Lancet Microbe, 2022; 3, e407. doi:  10.1016/S2666-5247(22)00130-6
[2] Hussain S, Perveen N, Hussain A, et al. The symbiotic continuum within ticks: opportunities for disease control. Front Microbiol, 2022; 13, 854803. doi:  10.3389/fmicb.2022.854803
[3] Senbill H, Tanaka T, Karawia D, et al. Morphological identification and molecular characterization of economically important ticks (Acari: Ixodidae) from north and north-western Egypt. Acta Trop, 2022; 231, 106438. doi:  10.1016/j.actatropica.2022.106438
[4] Mcinnes CJ, Damon IK, Smith GL, et al. ICTV virus taxonomy profile: Poxviridae 2023. J Gen Virol, 2023; 104, 001849.
[5] Mitjà O, Ogoina PD, Titanji BK, et al. The Monkeypox Lancet, 2023; 401, 60-74.
[6] O’toole Á, Neher RA, Ndodo N, et al. APOBEC3 deaminase editing in mpox virus as evidence for sustained human transmission since at least 2016. Science, 2023; 382, 595−600. doi:  10.1126/science.adg8116
[7] Mauldin MR, Antwerpen M, Emerson GL, et al. Cowpox virus: What's in a name?. Viruses, 2017; 9, 101. doi:  10.3390/v9050101
[8] Mcfadden G. Poxvirus tropism. Nat Rev Microbiol, 2005; 3, 201−13. doi:  10.1038/nrmicro1099
[9] Yu YZ, Lian ZX, Cui YD. The OH system: a panorama view of the PPV-host interaction. Infect Genet Evol, 2022; 98, 105220. doi:  10.1016/j.meegid.2022.105220
[10] Tack DM, Reynolds MG. Zoonotic poxviruses associated with companion animals. Animals 2011; 1, 377-95.
[11] Lewis-Jones S. Zoonotic poxvirus infections in humans. Curr Opin Infect Dis, 2004; 17, 81−9. doi:  10.1097/00001432-200404000-00003
[12] Brunetti CR, Amano H, Ueda Y, et al. Complete genomic sequence and comparative analysis of the tumorigenic poxvirus Yaba monkey TumorVirus. J Virol, 2003; 77, 13335−47. doi:  10.1128/JVI.77.24.13335-13347.2003
[13] Van Der Meer CS, Paulino PG, Jardim THA, et al. Detection and molecular characterization of Avipoxvirus in Culex spp. (Culicidae) captured in domestic areas in Rio De Janeiro, Brazil. Sci Rep, 2022; 12, 13496. doi:  10.1038/s41598-022-17745-4
[14] El-Ansary RE, El-Dabae WH, Bream AS, et al. Isolation and molecular characterization of lumpy skin disease virus from hard ticks, Rhipicephalus (Boophilus) annulatus in Egypt. BMC Vet Res, 2022; 18, 302. doi:  10.1186/s12917-022-03398-y
[15] Sohier C, Haegeman A, Mostin L, et al. Experimental evidence of mechanical lumpy skin disease virus transmission by Stomoxys calcitrans biting flies and Haematopota spp. Horseflies. Sci Rep, 2019; 9, 20076. doi:  10.1038/s41598-019-56605-6
[16] Brugman VA, Hernández-Triana LM, Prosser SWJ, et al. Molecular species identification, host preference and detection of myxoma virus in the Anopheles maculipennis complex (Diptera: Culicidae) in southern England, UK. Parasite Vector, 2015; 8, 421. doi:  10.1186/s13071-015-1034-8
[17] García-Pereira S, González-Barrio D, Fernández-García JL, et al. Detection of Myxoma Virus DNA in ticks from lagomorph species in Spain suggests their possible role as competent vector in viral transmission. J Wildl Dis, 2021; 57, 423−8.
[18] Shimizu K, Takase H, Okada A, et al. Possibility of mechanical transmission of parapoxvirus by houseflies (Musca domestica) on cattle and sheep farms. J Vet Med Sci, 2022; 84, 1313−9. doi:  10.1292/jvms.22-0158
[19] Cicculli V, Ayhan N, Luciani L, et al. Molecular detection of parapoxvirus in Ixodidae ticks collected from cattle in Corsica, France. Vet Med Sci, 2022; 8, 907−16. doi:  10.1002/vms3.700
[20] Guardone L, Varello K, Listorti V, et al. First report of swinepox in a wild boar in Italy: pathologic and molecular findings. Pathogens, 2023; 12, 472. doi:  10.3390/pathogens12030472
[21] Chen SF, Zhou YQ, Chen YR, et al. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018; 34, i884−90. doi:  10.1093/bioinformatics/bty560
[22] Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 2009; 25, 1754−60. doi:  10.1093/bioinformatics/btp324
[23] Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol, 2019; 20, 257. doi:  10.1186/s13059-019-1891-0
[24] Li DH, Liu CM, Luo RB, et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 2015; 31, 1674−6. doi:  10.1093/bioinformatics/btv033
[25] Pertea G, Huang XQ, Liang F, et al. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 2003; 19, 651−2. doi:  10.1093/bioinformatics/btg034
[26] Katoh K, Misawa K, Kuma KI, et al. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res, 2002; 30, 3059−66. doi:  10.1093/nar/gkf436
[27] Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021; 49, W293−6. doi:  10.1093/nar/gkab301
[28] Huang YQ, Bergant V, Grass V, et al. Multi-omics characterization of the monkeypox virus infection. Nat Commun, 2024; 15, 6778. doi:  10.1038/s41467-024-51074-6
[29] Cooke BD, Taggart P, Patel K. Quantifying resistance to myxomatosis in wild rabbits produces novel evolutionary insights. Epidemiol Infect, 2023; 151, e182. doi:  10.1017/S0950268823001668
[30] Sarker S, Raidal SR. A novel pathogenic avipoxvirus infecting vulnerable cook's petrel (Pterodroma cookii) in Australia demonstrates a high genomic and evolutionary proximity with South African avipoxviruses. Microbiol Spectr, 2023; 11, e0461022. doi:  10.1128/spectrum.04610-22
[31] Curaudeau M, Besombes C, Nakouné E, et al. Identifying the most probable mammal reservoir hosts for monkeypox virus based on ecological niche comparisons. Viruses, 2023; 15, 727. doi:  10.3390/v15030727
[32] Jeske K, Weber S, Pfaff F, et al. Molecular detection and characterization of the first Cowpox virus isolate derived from a bank vole. Viruses, 2019; 11, 1075. doi:  10.3390/v11111075
[33] Wang DX, Yang XL, Ren ZR, et al. Substantial viral diversity in bats and rodents from East Africa: insights into evolution, recombination, and cocirculation. Microbiome, 2024; 12, 72. doi:  10.1186/s40168-024-01782-4
[34] Chen YM, Hu SJ, Lin XD, et al. Host traits shape virome composition and virus transmission in wild small mammals. Cell, 2023; 186, 4662-75. e12.
[35] Moss B. Membrane fusion during poxvirus entry. Semin Cell Dev Biol, 2016; 60, 89−96. doi:  10.1016/j.semcdb.2016.07.015
[36] Águeda-Pinto A, Kraberger S, Everts A, et al. Identification of a novel Myxoma Virus C7-Like host range factor that enabled a species leap from rabbits to hares. mBio, 2022; 13, e0346121. doi:  10.1128/mbio.03461-21
[37] Hughes AL, Friedman R. Poxvirus genome evolution by gene gain and loss. Mol Phylogenet Evol, 2005; 35, 186−95. doi:  10.1016/j.ympev.2004.12.008
[38] Tuppurainen ESM, Stoltsz WH, Troskie M, et al. A potential role for Ixodid (Hard) tick vectors in the transmission of lumpy skin disease virus in cattle. Transbound Emerg Dis, 2011; 58, 93−104. doi:  10.1111/j.1865-1682.2010.01184.x
[39] Tuppurainen ESM, Lubinga JC, Stoltsz WH, et al. Evidence of vertical transmission of lumpy skin disease virus in Rhipicephalus decoloratus ticks. Ticks Tick Borne Dis, 2013; 4, 329−33. doi:  10.1016/j.ttbdis.2013.01.006
[40] Senkevich TG, Yutin N, Wolf YI, et al. Ancient gene capture and recent gene loss shape the evolution of Orthopoxvirus-host interaction genes. mBio, 2021; 12, e0149521.
[41] Gubser C, Bergamaschi D, Hollinshead M, et al. A new inhibitor of apoptosis from vaccinia virus and eukaryotes. PLoS Pathog, 2007; 3, e17. doi:  10.1371/journal.ppat.0030017
[42] Veyer DL, De Motes CM, Sumner RP, et al. Analysis of the anti-apoptotic activity of four vaccinia virus proteins demonstrates that B13 is the most potent inhibitor in isolation and during viral infection. J Gen Virol, 2014; 95, 2757−68. doi:  10.1099/vir.0.068833-0
[43] Stein AM, Biller SJ. An ocean of diffusible information. Trends Genet, 2024; 40, 209−10. doi:  10.1016/j.tig.2024.01.007
[44] Lücking D, Mercier C, Alarcón-Schumacher T, et al. Extracellular vesicles are the main contributor to the non-viral protected extracellular sequence space. ISME Commun, 2023; 3, 112. doi:  10.1038/s43705-023-00317-6
[45] Inglis LK, Roach MJ, Edwards RA. Prophages: an integral but understudied component of the human microbiome. Microbiol Genomics, 2024; 10, 001166.
[46] Patil S, Kondabagil K. Coevolutionary and phylogenetic analysis of mimiviral replication machinery suggest the cellular origin of mimiviruses. Mol Biol Evol, 2021; 38, 2014−29. doi:  10.1093/molbev/msab003
[47] Knutson BA, Broyles SS. Expansion of poxvirus RNA polymerase subunits sharing homology with corresponding subunits of RNA polymerase II. Virus Genes, 2008; 36, 307−11. doi:  10.1007/s11262-008-0207-3
[48] Molteni C, Forni D, Cagliani R, et al. Evolution and diversity of nucleotide and dinucleotide composition in poxviruses. J Gen Virol, 2023; 104, 001897.
[49] Yang ZL, Bruno DP, Martens CA, et al. Genome-wide analysis of the 5' and 3' ends of vaccinia virus early mRNAs delineates regulatory sequences of annotated and anomalous transcripts. J Virol, 2011; 85, 5897−909. doi:  10.1128/JVI.00428-11
[50] Valentine R, Smith GL. Inhibition of the RNA polymerase III-mediated dsDNA-sensing pathway of innate immunity by vaccinia virus protein E3. J Gen Virol, 2010; 91, 2221−9. doi:  10.1099/vir.0.021998-0
[51] Li YJ, Hou JJ, Sun Z, et al. Monkeypox virus 2022, gene heterogeneity and protein polymorphism. Signal Transduct Tar, 2023; 8, 278. doi:  10.1038/s41392-023-01540-2
[52] Münk C, Willemsen A, Bravo IG. An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals. BMC Evol Biol, 2012; 12, 71. doi:  10.1186/1471-2148-12-71
[53] Forni D, Cagliani R, Pozzoli U, et al. An APOBEC3 mutational signature in the genomes of human-infecting orthopoxviruses. mSphere, 2023; 8, e0006223. doi:  10.1128/msphere.00062-23
[54] Zhou JL, Wang XJ, Zhou Z, et al. Insights into the evolution and host adaptation of the monkeypox virus from a codon usage perspective: focus on the ongoing 2022 outbreak. Int J Mol Sci, 2023; 24, 11524. doi:  10.3390/ijms241411524
[55] Kwak ML, Foo M, Pocklington K, et al. Tick-crocodilian interactions: a review, with the first record of tick (Acari: Ixodidae) infestation in the saltwater crocodile (Crocodylus porosus), and a concise host-parasite index. Exp Appl Acarol, 2019; 78, 127−32. doi:  10.1007/s10493-019-00378-0
[56] Thézé J, Takatsuka J, Li Z, et al. New insights into the evolution of Entomopoxvirinae from the complete genome sequences of four entomopoxviruses infecting Adoxophyes honmai, Choristoneura biennis, Choristoneura rosaceana, and Mythimna separata. J Virol, 2013; 87, 7992−8003. doi:  10.1128/JVI.00453-13