[1] |
Bjørklund G, Semenova Y, Pivina L, et al. Uranium in drinking water: a public health threat. Arch Toxicol, 2020; 94, 1551−60. doi: 10.1007/s00204-020-02676-8 |
[2] |
Zhao B, Sun ZX, Guo YD, et al. Occurrence characteristics of uranium mineral-related substances in various environmental media in China: a critical review. J Hazard Mater, 2023; 441, 129856. doi: 10.1016/j.jhazmat.2022.129856 |
[3] |
Gao N, Huang ZH, Liu HQ, et al. Advances on the toxicity of uranium to different organisms. Chemosphere, 2019; 237, 124548. doi: 10.1016/j.chemosphere.2019.124548 |
[4] |
Ma MH, Wang RX, Xu LN, et al. Emerging health risks and underlying toxicological mechanisms of uranium contamination: lessons from the past two decades. Environ Int, 2020; 145, 106107. doi: 10.1016/j.envint.2020.106107 |
[5] |
Guéguen Y, Frerejacques M. Review of knowledge of uranium-induced kidney toxicity for the development of an adverse outcome pathway to renal impairment. Int J Mol Sci, 2022; 23, 4397. doi: 10.3390/ijms23084397 |
[6] |
Yue YC, Li MH, Wang HB, et al. The toxicological mechanisms and detoxification of depleted uranium exposure. Environ Health Prev Med, 2018; 23, 18. doi: 10.1186/s12199-018-0706-3 |
[7] |
Bellés M, Linares V, Luisa Albina M, et al. Melatonin reduces uranium-induced nephrotoxicity in rats. J Pineal Res, 2007; 43, 87−95. doi: 10.1111/j.1600-079X.2007.00447.x |
[8] |
Hao YH, Ren J, Liu J, et al. The protective role of zinc against acute toxicity of depleted uranium in rats. Basic Clin Pharmacol Toxicol, 2012; 111, 402−10. doi: 10.1111/j.1742-7843.2012.00910.x |
[9] |
Nagaraj K, Devasya RP, Bhagwath AA. Exopolysaccharide produced by Enterobacter sp. YG4 reduces uranium induced nephrotoxicity. Int J Biol Macromol, 2016; 82, 557−61. doi: 10.1016/j.ijbiomac.2015.11.020 |
[10] |
Yapar K, Çavuşoğlu K, Oruç E, et al. Protective role of Ginkgo biloba against hepatotoxicity and nephrotoxicity in uranium-treated mice. J Med Food, 2010; 13, 179−88. doi: 10.1089/jmf.2009.0028 |
[11] |
Priyamvada S, Khan SA, Khan MW, et al. Studies on the protective effect of dietary fish oil on uranyl-nitrate-induced nephrotoxicity and oxidative damage in rat kidney. Prostaglandins Leukot Essent Fatty Acids, 2010; 82, 35−44. doi: 10.1016/j.plefa.2009.10.009 |
[12] |
Rodnick KJ, Holman RW, Ropski PS, et al. A perspective on reagent diversity and non-covalent binding of reactive carbonyl species (RCS) and effector reagents in non-enzymatic glycation (NEG): mechanistic considerations and implications for future research. Front Chem, 2017; 5, 39. doi: 10.3389/fchem.2017.00039 |
[13] |
Van Bussel BCT, Van de Poll MCG, Schalkwijk CG, et al. Increased dicarbonyl stress as a novel mechanism of multi-organ failure in critical illness. Int J Mol Sci, 2017; 18, 346. doi: 10.3390/ijms18020346 |
[14] |
Irazabal MV, Torres VE. Reactive oxygen species and redox signaling in chronic kidney disease. Cells, 2020; 9, 1342. doi: 10.3390/cells9061342 |
[15] |
Onyango AN. Small reactive carbonyl compounds as tissue lipid oxidation products; and the mechanisms of their formation thereby. Chem Phys Lipids, 2012; 165, 777−86. doi: 10.1016/j.chemphyslip.2012.09.004 |
[16] |
Laskar AA, Younus H. Aldehyde toxicity and metabolism: the role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab Rev, 2019; 51, 42−64. doi: 10.1080/03602532.2018.1555587 |
[17] |
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev, 2014; 2014, 360438. |
[18] |
Eckl PM, Bresgen N. Genotoxicity of lipid oxidation compounds. Free Radic Biol Med, 2017; 111, 244−52. doi: 10.1016/j.freeradbiomed.2017.02.002 |
[19] |
Kathren RL, Burklin RK. Acute chemical toxicity of uranium. Health Phys, 2008; 94, 170−79. doi: 10.1097/01.HP.0000288043.94908.1f |
[20] |
Hao YH, Huang JW, Gu Y, et al. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity. Toxicol Appl Pharmacol, 2015; 287, 306−15. doi: 10.1016/j.taap.2015.06.019 |
[21] |
Linares V, Bellés M, Albina ML, et al. Assessment of the pro-oxidant activity of uranium in kidney and testis of rats. Toxicol Lett, 2006; 167, 152−61. doi: 10.1016/j.toxlet.2006.09.004 |
[22] |
Lestaevel P, Romero E, Dhieux B, et al. Different pattern of brain pro-/anti-oxidant activity between depleted and enriched uranium in chronically exposed rats. Toxicology, 2009; 258, 1−9. doi: 10.1016/j.tox.2008.12.021 |
[23] |
Arany I, Hall S, Dixit M. Age-dependent sensitivity of the mouse kidney to chronic nicotine exposure. Pediatr Res, 2017; 82, 822−8. doi: 10.1038/pr.2017.153 |
[24] |
Domitrović R, Cvijanović O, Pugel EP, et al. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney. Toxicology, 2013; 310, 115−23. doi: 10.1016/j.tox.2013.05.015 |
[25] |
Potočnjak I, Broznić D, Kindl M, et al. Stevia and stevioside protect against cisplatin nephrotoxicity through inhibition of ERK1/2, STAT3, and NF-κB activation. Food Chem Toxicol, 2017; 107, 215−25. doi: 10.1016/j.fct.2017.06.043 |
[26] |
Eraslan G, Sarıca ZS, Bayram LÇ, et al. The effects of diosmin on aflatoxin-induced liver and kidney damage. Environ Sci Pollut Res Int, 2017; 24, 27931−41. doi: 10.1007/s11356-017-0232-7 |
[27] |
Kuang WH, Zhang X, Zhu WF, et al. Ligustrazine modulates renal cysteine biosynthesis in rats exposed to cadmium. Environ Toxicol Pharmacol, 2017; 54, 125−32. doi: 10.1016/j.etap.2017.07.003 |
[28] |
Heymann HM, Gardner AM, Gross ER. Aldehyde-induced DNA and protein adducts as biomarker tools for alcohol use disorder. Trends Mol Med, 2018; 24, 144−55. doi: 10.1016/j.molmed.2017.12.003 |
[29] |
Alamil H, Galanti L, Heutte N, et al. Genotoxicity of aldehyde mixtures: profile of exocyclic DNA-adducts as a biomarker of exposure to tobacco smoke. Toxicol Lett, 2020; 331, 57−64. doi: 10.1016/j.toxlet.2020.05.010 |
[30] |
Davies SS, Zhang LS. Reactive carbonyl species scavengers-novel therapeutic approaches for chronic diseases. Curr Pharmacol Rep, 2017; 3, 51−67. doi: 10.1007/s40495-017-0081-6 |
[31] |
Peleli M, Zampas P, Papapetropoulos A. Hydrogen sulfide and the kidney: physiological roles, contribution to pathophysiology, and therapeutic potential. Antioxid Redox Signal, 2022; 36, 220−43. doi: 10.1089/ars.2021.0014 |
[32] |
Zuhra K, Augsburger F, Majtan T, et al. Cystathionine-β-synthase: molecular regulation and pharmacological inhibition. Biomolecules, 2020; 10, 697. doi: 10.3390/biom10050697 |
[33] |
Zheng JF, Zhao TT, Yuan Y, et al. Hydrogen sulfide (H2S) attenuates uranium-induced acute nephrotoxicity through oxidative stress and inflammatory response via Nrf2-NF-κB pathways. Chem Biol Interact, 2015; 242, 353−62. doi: 10.1016/j.cbi.2015.10.021 |
[34] |
Lobb I, Sonke E, Aboalsamh G, et al. Hydrogen sulphide and the kidney: important roles in renal physiology and pathogenesis and treatment of kidney injury and disease. Nitric Oxide, 2015; 46, 55−65. doi: 10.1016/j.niox.2014.10.004 |
[35] |
Feliers D, Lee HJ, Kasinath BS. Hydrogen sulfide in renal physiology and disease. Antioxid Redox Signal, 2016; 25, 720−31. doi: 10.1089/ars.2015.6596 |
[36] |
Corsello T, Komaravelli N, Casola A. Role of hydrogen sulfide in NRF2- and sirtuin- dependent maintenance of cellular redox balance. Antioxidants, 2018; 7, 129. doi: 10.3390/antiox7100129 |
[37] |
Fan RF, Li ZF, Zhang D, et al. Involvement of Nrf2 and mitochondrial apoptotic signaling in trehalose protection against cadmium-induced kidney injury. Metallomics, 2020; 12, 2098−107. doi: 10.1039/d0mt00213e |
[38] |
Fan RF, Tang KK, Wang ZY, et al. Persistent activation of Nrf2 promotes a vicious cycle of oxidative stress and autophagy inhibition in cadmium-induced kidney injury. Toxicology, 2021; 464, 152999. doi: 10.1016/j.tox.2021.152999 |
[39] |
Buha A, Baralić K, Djukic-Cosic D, et al. The role of toxic metals and metalloids in Nrf2 signaling. Antioxidants, 2021; 10, 630. doi: 10.3390/antiox10050630 |
[40] |
Yi J, Yuan Y, Zheng JF, et al. Hydrogen sulfide alleviates uranium-induced kidney cell apoptosis mediated by ER stress via 20S proteasome involving in Akt/GSK-3β/Fyn-Nrf2 signaling. Free Radical Res, 2018; 52, 1020−9. doi: 10.1080/10715762.2018.1514603 |
[41] |
Thiébault C, Carrière M, Milgram S, et al. Uranium induces apoptosis and is genotoxic to normal rat kidney (NRK-52E) proximal cells. Toxicol Sci, 2007; 98, 479−87. doi: 10.1093/toxsci/kfm130 |
[42] |
Nin DS, Idres SB, Song ZJ, et al. Biological effects of morpholin-4-Ium 4 methoxyphenyl (morpholino) phosphinodithioate and other phosphorothioate-based hydrogen sulfide donors. Antioxid Redox Signal, 2020; 32, 145−58. doi: 10.1089/ars.2019.7896 |
[43] |
Whiteman M, Perry A, Zhou ZM, et al. Phosphinodithioate and phosphoramidodithioate hydrogen sulfide donors. In: Moore PK, Whiteman M. Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide. Springer. 2015, 337-63. |
[44] |
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol Rev, 2023; 103, 231−76. |
[45] |
Rabbani N, Thornalley PJ. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int, 2018; 93, 803−13. doi: 10.1016/j.kint.2017.11.034 |
[46] |
Li D, Ferrari M, Ellis EM. Human aldo–keto reductase AKR7A2 protects against the cytotoxicity and mutagenicity of reactive aldehydes and lowers intracellular reactive oxygen species in hamster V79-4 cells. Chem Biol Interact, 2012; 195, 25−34. doi: 10.1016/j.cbi.2011.09.007 |
[47] |
Xiao F, Zhang P, Chen AH, et al. Hydrogen sulfide inhibits MPP+-induced aldehyde stress and endoplasmic reticulum stress in PC12 cells: involving upregulation of BDNF. Exp Cell Res, 2016; 348, 106−14. doi: 10.1016/j.yexcr.2016.09.006 |
[48] |
Filipovic MR, Zivanovic J, Alvarez B, et al. Chemical biology of H2S signaling through persulfidation. Chem Rev, 2018; 118, 1253−337. doi: 10.1021/acs.chemrev.7b00205 |
[49] |
Suzuki T, Takahashi J, Yamamoto M. Molecular basis of the KEAP1-NRF2 signaling pathway. Mol Cells, 2023; 46, 133−41. doi: 10.14348/molcells.2023.0028 |
[50] |
Koike S, Kayama T, Yamamoto S, et al. Polysulfides protect SH-SY5Y cells from methylglyoxal-induced toxicity by suppressing protein carbonylation: a possible physiological scavenger for carbonyl stress in the brain. NeuroToxicology, 2016; 55, 13−9. doi: 10.1016/j.neuro.2016.05.003 |
[51] |
Koike S, Nishimoto S, Ogasawara Y. Cysteine persulfides and polysulfides produced by exchange reactions with H2S protect SH-SY5Y cells from methylglyoxal-induced toxicity through Nrf2 activation. Redox Biol, 2017; 12, 530−9. doi: 10.1016/j.redox.2017.03.020 |
[52] |
Kumar M, Sandhir R. Neuroprotective effect of hydrogen sulfide in hyperhomocysteinemia is mediated through antioxidant action involving Nrf2. Neuromol Med, 2018; 20, 475−90. doi: 10.1007/s12017-018-8505-y |
[53] |
Milkovic L, Zarkovic N, Marusic Z, et al. The 4-hydroxynonenal-protein adducts and their biological relevance: are some proteins preferred targets? Antioxidants, 2023; 12, 856. |
[54] |
Gęgotek A, Skrzydlewska E. Biological effect of protein modifications by lipid peroxidation products. Chem Phys Lipids, 2019; 221, 46−52. doi: 10.1016/j.chemphyslip.2019.03.011 |
[55] |
Laggner H, Gmeiner BMK. Investigating the role of H₂S in 4-HNE scavenging. Methods Enzymol, 2015; 555, 3−18. |
[56] |
Mao ZM, Huang YR, Li BQ, et al. Hydrogen sulfide as a potent scavenger of toxicant acrolein. Ecotoxicol Environ Saf, 2022; 229, 113111. doi: 10.1016/j.ecoenv.2021.113111 |
[57] |
Schreier SM, Muellner MK, Steinkellner H, et al. Hydrogen sulfide scavenges the cytotoxic lipid oxidation product 4-HNE. Neurotox Res, 2010; 17, 249−56. doi: 10.1007/s12640-009-9099-9 |
[58] |
Kim HJ, Vaziri ND. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Renal Physiol, 2010; 298, F662−71. doi: 10.1152/ajprenal.00421.2009 |
[59] |
Aminzadeh MA, Vaziri ND. Downregulation of the renal and hepatic hydrogen sulfide (H2S)-producing enzymes and capacity in chronic kidney disease. Nephrol Dial Transplant, 2012; 27, 498−504. doi: 10.1093/ndt/gfr560 |
[60] |
Yuan Y, Zheng JF, Zhao TT, et al. Uranium-induced rat kidney cell cytotoxicity is mediated by decreased endogenous hydrogen sulfide (H2S) generation involved in reduced Nrf2 levels. Toxicol Res, 2016; 5, 660−73. doi: 10.1039/C5TX00432B |
[61] |
Meng WQ, Pei ZP, Feng YW, et al. Neglected role of hydrogen sulfide in sulfur mustard poisoning: Keap1 S-sulfhydration and subsequent Nrf2 pathway activation. Sci Rep, 2017; 7, 9433. doi: 10.1038/s41598-017-09648-6 |
[62] |
Liu N, Lin XL, Huang CY. Activation of the reverse transsulfuration pathway through NRF2/CBS confers erastin-induced ferroptosis resistance. Br J Cancer, 2020; 122, 279−92. doi: 10.1038/s41416-019-0660-x |
[63] |
Mohammed RA, Mansour SM. Sodium hydrogen sulfide upregulates cystathionine β-synthase and protects striatum against 3-nitropropionic acid-induced neurotoxicity inrats. J Pharm Pharmacol, 2021; 73, 310−21. doi: 10.1093/jpp/rgaa072 |
[64] |
Ebert B, Kisiela M, Malátková P, et al. Regulation of human carbonyl reductase 3 (CBR3; SDR21C2) expression by Nrf2 in cultured cancer cells. Biochemistry, 2010; 49, 8499−511. doi: 10.1021/bi100814d |
[65] |
Jamaluddin M, de Mello AH, Tapryal N, et al. NRF2 regulates cystathionine Gamma-lyase expression and activity in primary airway epithelial cells infected with respiratory syncytial virus. Antioxidants, 2022; 11, 1582. doi: 10.3390/antiox11081582 |