[1] McAllister TA, Wang YX, Diarra M, et al. Challenges of a one-health approach to the development of alternatives to antibiotics. Anim Front, 2018; 8, 10−20. doi:  10.1093/af/vfy002
[2] Jin Y, Shao CH, Li J, et al. Outbreak of multidrug resistant NDM-1-producing Klebsiella pneumoniae from a neonatal unit in Shandong Province, China. PLoS One, 2015; 10, e0119571. doi:  10.1371/journal.pone.0119571
[3] Simoni S, Mingoia M, Brenciani A, et al. First IncHI2 plasmid carrying mcr-9.1, blaVIM-1, and double copies of blaKPC-3 in a multidrug-resistant Escherichia coli human isolate. mSphere, 2021; 6, e0030221. doi:  10.1128/mSphere.00302-21
[4] Ferrari RG, Rosario DKA, Cunha-Neto A, et al. Worldwide epidemiology of Salmonella serovars in animal-based foods: a meta-analysis. Appl Environ Microbiol, 2019; 85, e00591−19.
[5] Octavia S, Chew KL, Chew KL, et al. Multidrug-resistant Salmonella enterica serovar London carrying blaNDM-1 encoding plasmid from Singapore. Clin Microbiol Infect, 2020; 26, 963−6. doi:  10.1016/j.cmi.2020.01.033
[6] Nielsen HL, Thomsen PK, Litrup E, et al. A case of blaNDM-1-positive Salmonella Kottbus, Denmark, November 2020. Euro Surveill, 2021; 26, 2100569.
[7] Beukers AG, John MA, Davis R, et al. Hospital outbreak of New Delhi metallo-β-lactamase type-1 (NDM-1) in Salmonella enterica with inter-species plasmid transmission. J Hosp Infect, 2021; 117, 23−7. doi:  10.1016/j.jhin.2021.08.014
[8] Gopinath S, Carden S, Monack D. Shedding light on Salmonella carriers. Trends Microbiol, 2012; 20, 320−7. doi:  10.1016/j.tim.2012.04.004
[9] Lu X, Hu YF, Luo M, et al. MCR-1.6, a new MCR variant carried by an IncP plasmid in a colistin-resistant Salmonella enterica serovar typhimurium isolate from a healthy individual. Antimicrob Agents Chemother, 2017; 61, e02632−16.
[10] Poirel L, Walsh TR, Cuvillier V, et al. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis, 2011; 70, 119−23. doi:  10.1016/j.diagmicrobio.2010.12.002
[11] Popoff MY, Bockemühl J, Gheesling LL. Supplement 2002 (no. 46) to the Kauffmann-White scheme. Res Microbiol, 2004; 155, 568−70. doi:  10.1016/j.resmic.2004.04.005
[12] Kolmogorov M, Yuan J, Lin Y, et al. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol, 2019; 37, 540−6. doi:  10.1038/s41587-019-0072-8
[13] Siguier P, Perochon J, Lestrade L, et al. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res, 2006; 34, D32−6. doi:  10.1093/nar/gkj014
[14] Bortolaia V, Kaas RS, Ruppe E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother, 2020; 75, 3491−500. doi:  10.1093/jac/dkaa345
[15] Carattoli A, Zankari E, García-Fernández A, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother, 2014; 58, 3895−903. doi:  10.1128/AAC.02412-14
[16] Dong MJ, Luo H, Gao F. Ori-Finder 2022: a comprehensive web server for prediction and analysis of bacterial replication origins. Genomics Proteomics Bioinformatics, 2022; 20, 1207−13. doi:  10.1016/j.gpb.2022.10.002
[17] Achtman M, Zhou ZM, Alikhan NF, et al. Genomic diversity of Salmonella enterica-The UoWUCC 10K genomes project. Wellcome Open Res, 2021; 5, 223. doi:  10.12688/wellcomeopenres.16291.2
[18] Croucher NJ, Page AJ, Connor TR, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res, 2015; 43, e15. doi:  10.1093/nar/gku1196
[19] Minh BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol, 2020; 37, 1530−4. doi:  10.1093/molbev/msaa015
[20] Mu YJ, Li RC, Du PC, et al. Genomic epidemiology of ST34 monophasic Salmonella enterica serovar typhimurium from clinical patients from 2008 to 2017 in Henan, China. Engineering, 2022; 15, 34−44. doi:  10.1016/j.eng.2022.05.006
[21] Cuypers WL, Jacobs J, Wong V, et al. Fluoroquinolone resistance in Salmonella: insights by whole-genome sequencing. Microbial Genomics 2018; 4.
[22] Song QF, Xu ZJ, Gao H, et al. Overview of the development of quinolone resistance in Salmonella species in China, 2005-2016. Infect Drug Resist, 2018; 11, 267−74. doi:  10.2147/IDR.S157460
[23] Liu Z, Hang XB, Xiao X, et al. Co-occurrence of bla NDM-1 and mcr-9 in a conjugative IncHI2/HI2A plasmid from a bloodstream infection-causing carbapenem-resistant Klebsiella pneumoniae. Front Microbiol, 2021; 12, 756201. doi:  10.3389/fmicb.2021.756201
[24] Diaconu EL, Alba P, Feltrin F, et al. Emergence of IncHI2 plasmids with Mobilized Colistin Resistance (mcr)-9 gene in ESBL-producing, multidrug-resistant Salmonella typhimurium and its monophasic variant ST34 from food-producing animals in Italy. Front Microbiol, 2021; 12, 705230. doi:  10.3389/fmicb.2021.705230
[25] Timmermans M, Wattiau P, Denis O, et al. Colistin resistance genes mcr-1 to mcr-5, including a case of triple occurrence (mcr-1, -3 and -5), in Escherichia coli isolates from faeces of healthy pigs, cattle and poultry in Belgium, 2012-2016. Int J Antimicrob Agents, 2021; 57, 106350. doi:  10.1016/j.ijantimicag.2021.106350
[26] Dang BJ, Zhang HY, Li ZW, et al. Coexistence of the blaNDM-1-carrying plasmid pWLK-NDM and the blaKPC-2-carrying plasmid pWLK-KPC in a Raoultella ornithinolytica isolate. Sci Rep, 2020; 10, 2360. doi:  10.1038/s41598-020-59341-4
[27] Wang S, Xu LC, Chi XH, et al. Emergence of NDM-1- and CTX-M-3-producing Raoultella ornithinolytica in human gut microbiota. Front Microbiol, 2019; 10, 2678. doi:  10.3389/fmicb.2019.02678
[28] Wu WJ, Feng Y, Tang GM, et al. NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev, 2019; 32, e00115−18.
[29] Song HJ, Zou SY, Huang Y, et al. Salmonella typhimurium with eight tandem copies of blaNDM-1 on a HI2 plasmid. Microorganisms, 2024; 12, 20.
[30] Fu SS, Jin SS, Ge HJ, et al. First detection of blaNDM-1-haboring IncHI2 plasmid in Escherichia coli strain isolated from goose in China. Foodborne Pathog Dis, 2023; 20, 244−50. doi:  10.1089/fpd.2022.0071
[31] Liu YY, Li T, Yue HY, et al. Occurrence and characterization of NDM-5-producing Escherichia coli from retail eggs. Front Microbiol, 2023; 14, 1281838. doi:  10.3389/fmicb.2023.1281838
[32] Zhang WH, Lu XY, Chen SJ, et al. Molecular epidemiology and population genomics of tet(X4), blaNDM or mcr-1 positive Escherichia coli from migratory birds in southeast coast of China. Ecotoxicol Environ Saf, 2022; 244, 114032. doi:  10.1016/j.ecoenv.2022.114032
[33] Lu X, Zeng M, Xu JL, et al. Epidemiologic and genomic insights on mcr-1-harbouring Salmonella from diarrhoeal outpatients in Shanghai, China, 2006–2016. eBioMedicine, 2019; 42, 133−44. doi:  10.1016/j.ebiom.2019.03.006
[34] Li Z, Li ZP, Peng Y, et al. Trans-regional and cross-host spread of mcr-carrying plasmids revealed by complete plasmid sequences - 44 countries, 1998-2020. China CDC Wkly, 2022; 4, 242−8. doi:  10.46234/ccdcw2022.058