[1] |
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015; 136, E359−86. doi: 10.1002/ijc.29210 |
[2] |
Liu CY, Chen KF, Chen PJ. Treatment of liver cancer. Cold Spring Harb Perspect Med, 2015; 5, a021535. doi: 10.1101/cshperspect.a021535 |
[3] |
Xia YX, Zhang F, Li XC, et al. Surgical treatment of primary liver cancer: a report of 10966 cases. Chin J Surg, 2021; 59, 6−17. (In Chinese |
[4] |
Chen P, Luo XJ, Dai GQ, et al. Dexmedetomidine promotes the progression of hepatocellular carcinoma through hepatic stellate cell activation. Exp Mol Med, 2020; 52, 1062−74. doi: 10.1038/s12276-020-0461-6 |
[5] |
Zhang Y, Li HJ, Wang DX, et al. Impact of inhalational versus intravenous anaesthesia on early delirium and long-term survival in elderly patients after cancer surgery: study protocol of a multicentre, open-label, and randomised controlled trial. BMJ Open, 2017; 7, e018607. doi: 10.1136/bmjopen-2017-018607 |
[6] |
Li KH, Yang JX, Han XC. Lidocaine sensitizes the cytotoxicity of cisplatin in breast cancer cells via up-regulation of RARβ2 and RASSF1A demethylation. Int J Mol Sci, 2014; 15, 23519−36. doi: 10.3390/ijms151223519 |
[7] |
Ling Q, Wu SY, Liao XZ, et al. Anesthetic propofol enhances cisplatin-sensitivity of non-small cell lung cancer cells through N6-methyladenosine-dependently regulating the miR-486-5p/RAP1-NF-κB axis. BMC Cancer, 2022; 22, 765. doi: 10.1186/s12885-022-09848-y |
[8] |
Huang H, Benzonana LL, Zhao H, et al. Prostate cancer cell malignancy via modulation of HIF-1α pathway with isoflurane and propofol alone and in combination. Br J Cancer, 2014; 111, 1338−49. doi: 10.1038/bjc.2014.426 |
[9] |
Vaupel P, Kelleher DK, Höckel M. Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol, 2001; 28, 29−35. |
[10] |
Daniele M Gilkes, Gregg L Semenza, Denis Wirtz. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer, 2014; 14, 430−9. |
[11] |
Chin BY, Jiang G, Wegiel B, et al. Hypoxia-inducible factor 1α stabilization by carbon monoxide results in cytoprotective preconditioning. Proc Natl Acad Sci USA, 2007; 104, 5109−14. doi: 10.1073/pnas.0609611104 |
[12] |
Palazon A, Goldrath AW, Nizet V, et al. HIF transcription factors, inflammation, and immunity. Immunity, 2014; 41, 518−28. doi: 10.1016/j.immuni.2014.09.008 |
[13] |
Huang SH, Zhao YY, Liu J. HIF-1α enhances autophagy to alleviate apoptosis in marginal cells in the stria vascular in neonatal rats under hypoxia. Int J Biochem Cell Biol, 2022; 149, 106259. doi: 10.1016/j.biocel.2022.106259 |
[14] |
Quintero M, Mackenzie N, Brennan PA. Hypoxia-inducible factor 1 (HIF-1) in cancer. Eur J Surg Oncol, 2004; 30, 465−8. doi: 10.1016/j.ejso.2004.03.008 |
[15] |
Zhuang Y, Li X, Zhan P, et al. HIF-1α and MBP1 are associated with the progression of breast cancer cells by repressing β-catenin transcription. Oncol Rep, 2022; 48, 149. doi: 10.3892/or.2022.8361 |
[16] |
Janji B, Chouaib S. The promise of targeting hypoxia to improve cancer immunotherapy: mirage or reality? Front Immunol, 2022; 13, 880810. |
[17] |
Florentin J, O'Neil SP, Ohayon LL, et al. VEGF receptor 1 promotes hypoxia-induced hematopoietic progenitor proliferation and differentiation. Front Immunol, 2022; 13, 882484. doi: 10.3389/fimmu.2022.882484 |
[18] |
Hosseini RF, Azad FJ, Yousefzadeh H, et al. Serum levels of vascular endothelial growth factor in chronic obstructive pulmonary disease. Med J Islam Repub Iran, 2014; 28, 85. |
[19] |
Balakrishnan S, Kumar BS. Correlation of serum vascular endothelial growth factor and cardiovascular risk factors on collateral formation in patients with acute coronary artery syndrome. Clin Anat, 2022; 35, 673−8. doi: 10.1002/ca.23890 |
[20] |
Krenn K, Klepetko W, Taghavi S, et al. Vascular endothelial growth factor increases pulmonary vascular permeability in cystic fibrosis patients undergoing lung transplantation. Eur J Cardiothorac Surg, 2007; 32, 35−41. doi: 10.1016/j.ejcts.2007.04.006 |
[21] |
Al-Salam S, Balalaa N, Faour I, et al. HIF-1α, VEGF and WT-1 are protagonists in bilateral primary angiosarcoma of breast: a case report and review of literature. Int J Clin Exp Pathol, 2012; 5, 247−53. |
[22] |
Wei D, Xin YC, Rong Y, et al. Correlation between the expression of VEGF and Ki67 and lymph node metastasis in non-small-cell lung cancer: a systematic review and meta-analysis. Evid Based Complement Alternat Med, 2022; 2022, 9693746. |
[23] |
Tian L, Chen XX, Cao L, et al. Effects of plant-based medicinal food on postoperative recurrence and lung metastasis of gastric cancer regulated by Wnt/β-catenin-EMT signaling pathway and VEGF-C/D-VEGFR-3 cascade in a mouse model. BMC Complement Med Ther, 2022; 22, 233. doi: 10.1186/s12906-022-03703-0 |
[24] |
Luo C, Ouyang MW, Fang YY, et al. Dexmedetomidine protects mouse brain from ischemia-reperfusion injury via inhibiting neuronal autophagy through up-regulating hiF-1α. Front Cell Neurosci, 2017; 11, 197. |
[25] |
Li BY, Liu Y, Li ZH, et al. Dexmedetomidine promotes the recovery of renal function and reduces the inflammatory level in renal ischemia-reperfusion injury rats through PI3K/Akt/HIF-1α signaling pathway. Eur Rev Med Pharmacol Sci, 2020; 24, 12400−7. |
[26] |
Chen SY, Wu JJ, Yang L, et al. Dexmedetomidine leads to the mitigation of myocardial ischemia/reperfusion-induced acute lung injury in diabetic rats via modulation of hypoxia-inducible factor-1α. Braz J Cardiovasc Surg, 2022; 37, 370−9. |
[27] |
Peng K, Chen WR, Xia F, et al. Dexmedetomidine post-treatment attenuates cardiac ischaemia/reperfusion injury by inhibiting apoptosis through HIF-1α signalling. J Cell Mol Med, 2020; 24, 850−61. doi: 10.1111/jcmm.14795 |
[28] |
Rao Q, You AB, Guo ZL, et al. Intrahepatic tissue implantation represents a favorable approach for establishing orthotopic transplantation hepatocellular carcinoma mouse models. PLoS One, 2016; 11, e0148263. doi: 10.1371/journal.pone.0148263 |
[29] |
Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol, 1999; 155, 739−52. doi: 10.1016/S0002-9440(10)65173-5 |
[30] |
Luo QX, Wang J, Zhao WY, et al. Vasculogenic mimicry in carcinogenesis and clinical applications. J Hematol Oncol, 2020; 13, 19. doi: 10.1186/s13045-020-00858-6 |
[31] |
Niu K, Chen XW, Qin Y, et al. Celecoxib blocks vasculogenic mimicry via an off-target effect to radiosensitize lung cancer cells: an experimental study. Front Oncol, 2021; 11, 697227. doi: 10.3389/fonc.2021.697227 |
[32] |
Li Q, Ni Y, Zhang LR, et al. HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther, 2021; 6, 76. doi: 10.1038/s41392-020-00453-8 |
[33] |
You L, Wu WD, Wang X, et al. The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev, 2021; 41, 1622−43. doi: 10.1002/med.21771 |
[34] |
Li FF, Shi YY, Zhang Y, et al. Investigating the mechanism of Xian-ling-lian-xia-fang for inhibiting vasculogenic mimicry in triple negative breast cancer via blocking VEGF/MMPs pathway. Chin Med, 2022; 17, 44. doi: 10.1186/s13020-022-00597-5 |
[35] |
Yuan YY, Geng BC, Xu XY, et al. Dual VEGF/PDGF knockdown suppresses vasculogenic mimicry formation in choroidal melanoma cells via the Wnt5a/β-catenin/AKT signaling pathway. Acta Histochem, 2022; 124, 151842. doi: 10.1016/j.acthis.2021.151842 |
[36] |
Zhao YS, Guo SP, Deng J, et al. VEGF/VEGFR-targeted therapy and immunotherapy in non-small cell lung cancer: targeting the tumor microenvironment. Int J Biol Sci, 2022; 18, 3845−58. doi: 10.7150/ijbs.70958 |
[37] |
Zeng CY, Wang XF, Hua FZ, et al. HIF-1α in osteoarthritis: from pathogenesis to therapeutic implications. Front Pharmacol, 2022; 13, 927126. doi: 10.3389/fphar.2022.927126 |
[38] |
Zhang CC, Niu H, Wan CY, et al. Drug D, a diosgenin derive, inhibits L-arginine-induced acute pancreatitis through meditating GSDMD in the endoplasmic reticulum via the TXNIP/HIF-1α pathway. Nutrients, 2022; 14, 2591. doi: 10.3390/nu14132591 |
[39] |
Cai Q, Liu GQ, Huang LS, et al. The role of dexmedetomidine in tumor-progressive factors in the perioperative period and cancer recurrence: a narrative review. Drug Des Devel Ther, 2022; 16, 2161−75. doi: 10.2147/DDDT.S358042 |
[40] |
Che JP, Liu MM, Lv HW. Dexmedetomidine disrupts esophagus cancer tumorigenesis by modulating circ_0003340/miR-198/HMGA2 axis. Anticancer Drugs, 2022; 33, 448−58. doi: 10.1097/CAD.0000000000001284 |