| [1] | Snow KJ, Sismanidis C, Denholm J, et al. The incidence of tuberculosis among adolescents and young adults: a global estimate. Eur Respir J, 2018; 51, 1702352. doi: 10.1183/13993003.02352-2017 |
| [2] | Guthold R, Baltag V, Katwan E, et al. The top global causes of adolescent mortality and morbidity by age and sex, 2019. J Adolesc Health, 2021; 69, 540. doi: 10.1016/j.jadohealth.2021.06.023 |
| [3] | World Health Organization. Global tuberculosis report 2022. Geneva: World Health Organization, 2022. |
| [4] | World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024. |
| [5] | Jiang H, Liu MY, Zhang YJ, et al. Changes in incidence and epidemiological characteristics of pulmonary tuberculosis in Mainland China, 2005-2016. JAMA Netw Open, 2021; 4, e215302. doi: 10.1001/jamanetworkopen.2021.5302 |
| [6] | Dong YH, Wang LP, Burgner DP, et al. Infectious diseases in children and adolescents in China: analysis of national surveillance data from 2008 to 2017. BMJ, 2020; 369, m1043. |
| [7] | Yang RL, Liu MY, Jiang H, et al. The epidemiology of pulmonary tuberculosis in children in Mainland China, 2009–2015. Arch Dis Child, 2020; 105, 319−25. doi: 10.1136/archdischild-2019-317635 |
| [8] | World Health Organization. WHO treatment guidelines for drug-resistant tuberculosis, 2016 update. Geneva: World Health Organization, 2016. |
| [9] | Guo Q, Pan Y, Yang ZH, et al. Epidemiology and clinical characteristics of pediatric drug-resistant tuberculosis in Chongqing, China. PLoS One, 2016; 11, e0151303. doi: 10.1371/journal.pone.0151303 |
| [10] | Zhou XL, Chen QP, Wang MS. Prevalence of multidrug-resistant tuberculosis in suspected childhood tuberculosis in Shandong, China: a laboratory-based study. J Int Med Res, 2019; 48, 300060519869715. |
| [11] | Zhao YL, Xu SF, Wang LX, et al. National survey of drug-resistant tuberculosis in China. N Engl J Med, 2012; 366, 2161−70. doi: 10.1056/NEJMoa1108789 |
| [12] | Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014; 30, 2114−20. doi: 10.1093/bioinformatics/btu170 |
| [13] | Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med, 2015; 7, 51. doi: 10.1186/s13073-015-0164-0 |
| [14] | Phelan JE, O'Sullivan DM, Machado D, et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med, 2019; 11, 41. doi: 10.1186/s13073-019-0650-x |
| [15] | Freschi L, Vargas R Jr, Husain A, et al. Population structure, biogeography and transmissibility of Mycobacterium tuberculosis. Nat Commun, 2021; 12, 6099. doi: 10.1038/s41467-021-26248-1 |
| [16] | He WC, Tan YH, Liu CF, et al. Drug-resistant characteristics, genetic diversity, and transmission dynamics of rifampicin-resistant Mycobacterium tuberculosis in Hunan, China, revealed by whole-genome sequencing. Microbiol Spectr, 2022; 10, e01543−21. |
| [17] | Clegg LX, Hankey BF, Tiwari R, et al. Estimating average annual per cent change in trend analysis. Stat Med, 2009; 28, 3670−82. doi: 10.1002/sim.3733 |
| [18] | World Health Organization. Programming for adolescent health and development. Geneva: World Health Organization, 1999. |
| [19] | World Health Organization. Health for the world’s adolescents: a second chance in the second decade. Geneva: World Health Organization, 2014. |
| [20] | Chiang SS, Waterous PM, Atieno VF, et al. Caring for adolescents and young adults with tuberculosis or at risk of tuberculosis: consensus statement from an international expert panel. J Adolesc Health, 2023; 72, 323−31. doi: 10.1016/j.jadohealth.2022.10.036 |
| [21] | World Health Organization. Meeting report of the WHO expert consultation on the definition of extensively: drug-resistant tuberculosis. Geneva: World Health Organization, 2020. |
| [22] | Song WM, Li YF, Liu YX, et al. Drug-resistant tuberculosis among children: a systematic review and meta-analysis. Front Public Health, 2021; 9, 721817. doi: 10.3389/fpubh.2021.721817 |
| [23] | Ködmön C, van den Boom M, Zucs P, et al. Childhood multidrug-resistant tuberculosis in the European Union and European Economic Area: an analysis of tuberculosis surveillance data from 2007 to 2015. Euro Surveill, 2017; 22, 17−00103. |
| [24] | Marais BJ, Victor TC, Hesseling AC, et al. Beijing and Haarlem genotypes are overrepresented among children with drug-resistant tuberculosis in the western Cape Province of South Africa. J Clin Microbiol, 2006; 44, 3539−43. doi: 10.1128/JCM.01291-06 |
| [25] | Pang J, Teeter LD, Katz DJ, et al. Epidemiology of tuberculosis in young children in the United States. Pediatrics, 2014; 133, e494−504. doi: 10.1542/peds.2013-2570 |
| [26] | Collaborative Group for the Meta-Analysis of Individual Patient Data in MDR-TB treatment–2017. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet, 2018; 392, 821−34. doi: 10.1016/S0140-6736(18)31644-1 |
| [27] | Abebaw Y, Abebe M, Tola HH, et al. Pulmonary tuberculosis case notification and burden of drug resistance among children under 15 years of age in Ethiopia: sub-analysis from third-round drug resistance tuberculosis survey. BMC Pediatr, 2023; 23, 418. doi: 10.1186/s12887-023-04240-6 |
| [28] | Horton KC, MacPherson P, Houben RMGJ, et al. Sex differences in tuberculosis burden and notifications in low- and middle-income countries: a systematic review and meta-analysis. PLoS Med, 2016; 13, e1002119. doi: 10.1371/journal.pmed.1002119 |
| [29] | Kapata N, Chanda-Kapata P, Ngosa W, et al. The prevalence of tuberculosis in Zambia: results from the first national TB prevalence survey, 2013-2014. PLoS One, 2016; 11, e0146392. doi: 10.1371/journal.pone.0146392 |
| [30] | Storla DG, Yimer S, Bjune GA. A systematic review of delay in the diagnosis and treatment of tuberculosis. BMC Public Health, 2008; 8, 15 doi: 10.1186/1471-2458-8-15 |
| [31] | Atre SR, Jagtap JD, Faqih MI, et al. Tuberculosis pathways to care and transmission of multidrug resistance in India. Am J Respir Crit Care Med, 2022; 205, 233−41. doi: 10.1164/rccm.202012-4333OC |
| [32] | Iravatham CC, Kumar Neela VS, Valluri VL. Identifying and mapping TB hot spots in an urban slum by integratingGeographic positioning system and the local postman - A pilot study. Indian J Tuberc, 2019; 66, 203−8. doi: 10.1016/j.ijtb.2019.02.008 |
| [33] | Siddalingaiah N, Chawla K, Nagaraja SB, et al. Risk factors for the development of tuberculosis among the pediatric population: a systematic review and meta-analysis. Eur J Pediatr, 2023; 182, 3007−19. doi: 10.1007/s00431-023-04988-0 |
| [34] | Tadokera R, Bekker LG, Kreiswirth BN, et al. TB transmission is associated with prolonged stay in a low socio-economic, high burdened TB and HIV community in Cape Town, South Africa. BMC Infect Dis, 2020; 20, 120. doi: 10.1186/s12879-020-4828-z |
| [35] | Martinez L, Lo NC, Cords O, et al. Paediatric tuberculosis transmission outside the household: challenging historical paradigms to inform future public health strategies. Lancet Respir Med, 2019; 7, 544−52. doi: 10.1016/S2213-2600(19)30137-7 |
| [36] | Ayles H, Muyoyeta M, Du Toit E, et al. Effect of household and community interventions on the burden of tuberculosis in southern Africa: the ZAMSTAR community-randomised trial. Lancet, 2013; 382, 1183−94. doi: 10.1016/S0140-6736(13)61131-9 |
| [37] | Johnstone-Robertson S, Lawn SD, Welte A, et al. Tuberculosis in a South African prison - a transmission modelling analysis. S Afr Med J, 2011; 101, 809−13. |
| [38] | Li Y, Leung GM, Tang JW, et al. Role of ventilation in airborne transmission of infectious agents in the built environment - a multidisciplinary systematic review. Indoor Air, 2007; 17, 2−18. doi: 10.1111/j.1600-0668.2006.00445.x |
| [39] | Menzies D, Fanning A, Yuan LL, et al. Hospital ventilation and risk for tuberculous infection in Canadian health care workers. Ann Intern Med, 2000; 133, 779−89. doi: 10.7326/0003-4819-133-10-200011210-00010 |
| [40] | Du CR, Wang SC, Yu MC, et al. Effect of ventilation improvement during a tuberculosis outbreak in underventilated university buildings. Indoor Air, 2020; 30, 422−32. doi: 10.1111/ina.12639 |
| [41] | World Health Organization. WHO guidelines on tuberculosis infection prevention and control: 2019 update. Geneva: World Health Organization, 2019. |
| [42] | Netikul T, Thawornwattana Y, Mahasirimongkol S, et al. Whole-genome single nucleotide variant phylogenetic analysis of Mycobacterium tuberculosis Lineage 1 in endemic regions of Asia and Africa. Sci Rep, 2022; 12, 1565. doi: 10.1038/s41598-022-05524-0 |
| [43] | Niemann S, Diel R, Khechinashvili G, et al. Mycobacterium tuberculosis Beijing lineage favors the spread of multidrug-resistant tuberculosis in the republic of Georgia. J Clin Microbiol, 2010; 48, 3544−50. doi: 10.1128/JCM.00715-10 |
| [44] | Atavliyeva S, Auganova D, Tarlykov P. Genetic diversity, evolution and drug resistance of Mycobacterium tuberculosis lineage 2. Front Microbiol, 2024; 15, 1384791. doi: 10.3389/fmicb.2024.1384791 |
| [45] | Wang JY, Yu CC, Xu YN, et al. Analysis of drug-resistance characteristics and genetic diversity of multidrug-resistant tuberculosis based on whole-genome sequencing on the Hainan Island, China. Infect Drug Resist, 2023; 16, 5783−98. doi: 10.2147/IDR.S423955 |
| [46] | Phyu AN, Aung ST, Palittapongarnpim P, et al. Distribution of Mycobacterium tuberculosis lineages and drug resistance in Upper Myanmar. Trop Med Infect Dis, 2022; 7, 448. doi: 10.3390/tropicalmed7120448 |
| [47] | Jian JY, Yang XY, Yang J, et al. Evaluation of the GenoType MTBDRplus and MTBDRsl for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Beijing, China. Infect Drug Resist, 2018; 11, 1627−34. doi: 10.2147/IDR.S176609 |
| [48] | Zhao B, Liu CF, Fan JL, et al. Transmission and drug resistance genotype of multidrug-resistant or rifampicin-resistant Mycobacterium tuberculosis in Chongqing, China. Microbiol Spectr, 2022; 10, e02405−21. |
| [49] | Perdigão J, Silva C, Maltez F, et al. Emergence of multidrug-resistant Mycobacterium tuberculosis of the Beijing lineage in Portugal and Guinea-Bissau: a snapshot of moving clones by whole-genome sequencing. Emerg Microbes Infect, 2020; 9, 1342−53. doi: 10.1080/22221751.2020.1774425 |
| [50] | Cohen KA, Abeel T, Manson McGuire A, et al. Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med, 2015; 12, e1001880. doi: 10.1371/journal.pmed.1001880 |
| [51] | Torres Ortiz A, Coronel J, Vidal JR, et al. Genomic signatures of pre-resistance in Mycobacterium tuberculosis. Nat Commun, 2021; 12, 7312. doi: 10.1038/s41467-021-27616-7 |
| [52] | Pym AS, Saint-Joanis B, Cole ST. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect Immun, 2002; 70, 4955−60. doi: 10.1128/IAI.70.9.4955-4960.2002 |
| [53] | Gagneux S, Long CD, Small PM, et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science, 2006; 312, 1944−6. doi: 10.1126/science.1124410 |
| [54] | Alame Emane AK, Guo XJ, Takiff HE, et al. Highly transmitted M. tuberculosis strains are more likely to evolve MDR/XDR and cause outbreaks, but what makes them highly transmitted? . Tuberculosis, 2021; 129, 102092. doi: 10.1016/j.tube.2021.102092 |
| [55] | Comas I, Borrell S, Roetzer A, et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet, 2012; 44, 106−10. doi: 10.1038/ng.1038 |
| [56] | Zhu CD, Yang TT, Yin JF, et al. The global success of Mycobacterium tuberculosis modern Beijing family is driven by a few recently emerged strains. Microbiol Spectr, 2023; 11, e03339−22. |