[1] |
Hanany M, Rivolta C, Sharon D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc Natl Acad Sci USA, 2020; 117, 2710−6. doi: 10.1073/pnas.1913179117 |
[2] |
Sundaramurthi H, Moran A, Perpetuini AC, et al. Emerging drug therapies for inherited retinal dystrophies. Adv Exp Med Biol, 2019; 1185, 263−7. |
[3] |
Botto C, Rucli M, Tekinsoy MD, et al. Early and late stage gene therapy interventions for inherited retinal degenerations. Prog Retin Eye Res, 2022; 86, 100975. doi: 10.1016/j.preteyeres.2021.100975 |
[4] |
Zhang SJ, Wang LF, Xiao Z, et al. Analysis of radial peripapillary capillary density in patients with bietti crystalline dystrophy by optical coherence tomography angiography. Biomed Environ Sci, 2022; 35, 107−14. |
[5] |
Kim M, Yun J, Cho Y, et al. Deep learning in medical imaging. Neurospine, 2019; 16, 657−68. doi: 10.14245/ns.1938396.198 |
[6] |
Abràmoff MD, Lou YY, Erginay A, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci, 2016; 57, 5200−6. doi: 10.1167/iovs.16-19964 |
[7] |
Grassmann F, Mengelkamp J, Brandl C, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology, 2018; 125, 1410−20. doi: 10.1016/j.ophtha.2018.02.037 |
[8] |
Liu HR, Li L, Wormstone IM, et al. Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs. JAMA Ophthalmol, 2019; 137, 1353−60. doi: 10.1001/jamaophthalmol.2019.3501 |
[9] |
Kermany D, Zhang K, Goldbaum M. Labeled optical coherence tomography (OCT) and chest X-ray images for classification. Mendeley Data, 2018; 2. |
[10] |
Srinivasan PP, Kim LA, Mettu PS, et al. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed Opt Express, 2014; 5, 3568−77. doi: 10.1364/BOE.5.003568 |
[11] |
Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. Comput Sci, 2015; 14, 38−39. |
[12] |
Wang L, Yoon KJ. Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks. IEEE Trans Pattern Anal Mach Intell, 2022; 44, 3048−68. doi: 10.1109/TPAMI.2021.3055564 |
[13] |
Sankar S, Sidibé D, Cheung Y, et al. Classification of SD-OCT volumes for DME detection: an anomaly detection approach. Medical Imaging 2016: Computer-Aided Diagnosis, 2016; 9785, 688−93. |
[14] |
Anantrasirichai N, Achim A, Morgan JE, et al. SVM-based texture classification in optical coherence tomography. In: 2013 IEEE 10th International Symposium on Biomedical Imaging. IEEE. 2013, 1332−5. |
[15] |
Liu YY, Chen M, Ishikawa H, et al. Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding. Med Image Anal, 2011; 15, 748−59. doi: 10.1016/j.media.2011.06.005 |
[16] |
Hussain A, Bhuiyan A, Luu CD, et al. Classification of healthy and diseased retina using SD-OCT imaging and Random Forest algorithm. PLoS One, 2018; 13, e0198281. doi: 10.1371/journal.pone.0198281 |
[17] |
Wang J, Deng GH, Li WY, et al. Deep learning for quality assessment of retinal OCT images. Biomed Opt Express, 2019; 10, 6057−72. doi: 10.1364/BOE.10.006057 |
[18] |
Ji QG, He WJ, Huang J, et al. Efficient deep learning-based automated pathology identification in retinal optical coherence tomography images. Algorithms, 2018; 11, 88. doi: 10.3390/a11060088 |
[19] |
Shih FY, Patel H. Deep learning classification on optical coherence tomography retina images. Intern J Pattern Recognit Artif Intell, 2020; 34, 2052002. doi: 10.1142/S0218001420520023 |
[20] |
Fang LY, Wang C, Li ST, et al. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels. J Biomed Opt, 2017; 22, 116011. |
[21] |
Ji QG, Huang J, He WJ, et al. Optimized deep convolutional neural networks for identification of macular diseases from optical coherence tomography images. Algorithms, 2019; 12, 51. doi: 10.3390/a12030051 |
[22] |
Karri SPK, Chakraborty D, Chatterjee J. Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration. Biomed Opt Express, 2017; 8, 579−92. doi: 10.1364/BOE.8.000579 |
[23] |
Lu W, Tong Y, Yu Y, et al. Deep learning-based automated classification of multi-categorical abnormalities from optical coherence tomography images. Transl Vis Sci Technol, 2018; 7, 41. doi: 10.1167/tvst.7.6.41 |
[24] |
Motozawa N, An GZ, Takagi S, et al. Optical coherence tomography-based deep-learning models for classifying normal and age-related macular degeneration and exudative and non-exudative age-related macular degeneration changes. Ophthalmol Ther, 2019; 8, 527−39. doi: 10.1007/s40123-019-00207-y |
[25] |
Fujinami-Yokokawa Y, Pontikos N, Yang LZ, et al. Prediction of causative genes in inherited retinal disorders from spectral-domain optical coherence tomography utilizing deep learning techniques. J Ophthalmol, 2019; 2019, 1691064. |
[26] |
Stevenson CH, Hong SC, Ogbuehi KC. Development of an artificial intelligence system to classify pathology and clinical features on retinal fundus images. Clin Exp Ophthalmol, 2019; 47, 484−9. doi: 10.1111/ceo.13433 |
[27] |
Shah M, Roomans Ledo A, Rittscher J. Automated classification of normal and Stargardt disease optical coherence tomography images using deep learning. Acta Ophthalmol, 2020; 98, e715−21. |
[28] |
LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998; 86, 2278−324. doi: 10.1109/5.726791 |
[29] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 3rd International Conference on Learning Representations. 2015. |
[30] |
Lake BM, Salakhutdinov R, Tenenbaum JB. One-shot learning by inverting a compositional causal process. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. Curran Associates Inc. 2013, 2526−34. |
[31] |
Jankowski N, Duch W, Grąbczewski K. Meta-learning in computational intelligence. Springer. 2011. |
[32] |
Burlina P, Paul W, Mathew P, et al. Low-shot deep learning of diabetic retinopathy with potential applications to address artificial intelligence bias in retinal diagnostics and rare ophthalmic diseases. JAMA Ophthalmol, 2020; 138, 1070−7. doi: 10.1001/jamaophthalmol.2020.3269 |
[33] |
Yoo TK, Choi JY, Kim HK. Feasibility study to improve deep learning in OCT diagnosis of rare retinal diseases with few-shot classification. Med Biol Eng Comput, 2021; 59, 401−15. doi: 10.1007/s11517-021-02321-1 |
[34] |
Xu JG, Shen JX, Wan C, et al. A few-shot learning-based retinal vessel segmentation method for assisting in the central serous chorioretinopathy laser surgery. Front Med (Lausanne), 2022; 9, 821565. |
[35] |
Quellec G, Lamard M, Conze PH, et al. Automatic detection of rare pathologies in fundus photographs using few-shot learning. Med Image Anal, 2020; 61, 101660. doi: 10.1016/j.media.2020.101660 |
[36] |
Kermany DS, Goldbaum M, Cai WJ, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 2018; 172, 1122−31.e9. doi: 10.1016/j.cell.2018.02.010 |
[37] |
Abbasi S, Hajabdollahi M, Karimi N, et al. Modeling teacher-student techniques in deep neural networks for knowledge distillation. In: 2020 International Conference on Machine Vision and Image Processing (MVIP). IEEE. 2020, 1−6. |
[38] |
Yoo TK, Choi JY, Seo JG, et al. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. Med Biol Eng Comput, 2019; 57, 677−87. doi: 10.1007/s11517-018-1915-z |
[39] |
Miri MS, Abràmoff MD, Lee K, et al. Multimodal segmentation of optic disc and cup from SD-OCT and color fundus photographs using a machine-learning graph-based approach. IEEE Trans Med Imaging, 2015; 34, 1854−66. doi: 10.1109/TMI.2015.2412881 |