[1] Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet, 2004; 363, 1965−76. doi:  10.1016/S0140-6736(04)16412-X
[2] Nicolle C, Manceaux L. Sur une infection à corps de Leishman (ou organismes voisins) du gondi. C R Seances Acad Sci, 1908; 147, 763−6.
[3] Splendore A. Un nuovo protozoa parassita de' conigli. Incontrato nelle lesioni anatomiche d'une malattia che ricorda in molti punti il Kala-azar dell' uomo. Nota preliminare Pel Rev Soc Scient Sao Paulo, 1908; 3, 109−12.
[4] Howe DK, Sibley LD. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis, 1995; 172, 1561−6. doi:  10.1093/infdis/172.6.1561
[5] Xiao JC, Jones-Brando L, Talbot CC Jr, et al. Differential effects of three canonical Toxoplasma strains on gene expression in human neuroepithelial cells. Infect Immun, 2011; 79, 1363−73. doi:  10.1128/IAI.00947-10
[6] Groër MW, Yolken RH, Xiao JC, et al. Prenatal depression and anxiety in Toxoplasma gondii-positive women. Am J Obstet Gynecol, 2011; 204, 433.e1−7. doi:  10.1016/j.ajog.2011.01.004
[7] Chaichan P, Mercier A, Galal L, et al. Geographical distribution of Toxoplasma gondii genotypes in Asia: a link with neighboring continents. Infect Genet Evol, 2017; 53, 227−38. doi:  10.1016/j.meegid.2017.06.002
[8] Shen JL, Yu L. Prevalence and fundamental researches of prevention and treatment of toxoplasmosis in China: an overview. Chin J Schisto Control, 2019; 31, 71−6. (In Chinese
[9] Graham AK, Fong C, Naqvi A, et al. Toxoplasmosis of the central nervous system: manifestations vary with immune responses. J Neurol Sci, 2021; 420, 117223. doi:  10.1016/j.jns.2020.117223
[10] Luft BJ, Remington JS. Toxoplasmic encephalitis in AIDS. Clin Infect Dis, 1992; 15, 211−22. doi:  10.1093/clinids/15.2.211
[11] Maldonado YA, Read JS, Committee on Infectious Diseases. Diagnosis, treatment, and prevention of congenital toxoplasmosis in the united states. Pediatrics, 2017; 139, e20163860. doi:  10.1542/peds.2016-3860
[12] Luft BJ, Conley F, Remington JS, et al. Outbreak of central-nervous-system toxoplasmosis in western Europe and North America. Lancet, 1983; 321, 781−4. doi:  10.1016/S0140-6736(83)91847-0
[13] Suzuki Y, Yang Q, Yang S, et al. IL-4 is protective against development of toxoplasmic encephalitis. J Immunol, 1996; 157, 2564−9. doi:  10.4049/jimmunol.157.6.2564
[14] Yao Y, Shi TY, Shu PY, et al. Toxoplasma gondii infection and brain inflammation: a two-sample mendelian randomization analysis. Heliyon, 2024; 10, e24228. doi:  10.1016/j.heliyon.2024.e24228
[15] Lüder CGK, Giraldo-Velásquez M, Sendtner M, et al. Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation. Exp Parasitol, 1999; 93, 23−32. doi:  10.1006/expr.1999.4421
[16] Olariu TR, Remington JS, McLeod R, et al. Severe congenital toxoplasmosis in the United States: clinical and serologic findings in untreated infants. Pediatr Infect Dis J, 2011; 30, 1056−61. doi:  10.1097/INF.0b013e3182343096
[17] Chen XJ, Chen B, Hou XQ, et al. Association between Toxoplasma gondii infection and psychiatric disorders in Zhejiang, Southeastern China. Acta Trop, 2019; 192, 82−6. doi:  10.1016/j.actatropica.2019.02.001
[18] Veleva I, Stoychev K, Stoimenova-Popova M, et al. Toxoplasma gondii seropositivity and cognitive function in adults with schizophrenia. Schizophr Res Cogn, 2022; 30, 100269. doi:  10.1016/j.scog.2022.100269
[19] Grada S, Mihu AG, Petrescu C, et al. Toxoplasma gondii Infection in patients with psychiatric disorders from western Romania. Medicina, 2022; 58, 208. doi:  10.3390/medicina58020208
[20] Liu TX, Gao P, Bu DY, et al. Association between Toxoplasma gondii infection and psychiatric disorders: a cross-sectional study in China. Sci Rep, 2022; 12, 15092. doi:  10.1038/s41598-022-16420-y
[21] Mao FZ, Yang YG, Chen YY, et al. Seroprevalence and risk factors of Toxoplasma gondii infection among high-risk populations in Jiangsu Province, Eastern China. Front Cell Infect Microbiol, 2021; 11, 783654. doi:  10.3389/fcimb.2021.783654
[22] Ademe M, Kebede T, Teferra S, et al. Is latent Toxoplasma gondii infection associated with the occurrence of schizophrenia? A case-control study. PLoS One, 2022; 17, e0270377. doi:  10.1371/journal.pone.0270377
[23] Contopoulos-Ioannidis DG, Gianniki M, Ai-Nhi Truong A, et al. Toxoplasmosis and schizophrenia: a systematic review and meta-analysis of prevalence and associations and future directions. Psychiatr Res Clin Pract, 2022; 4, 48−60. doi:  10.1176/appi.prcp.20210041
[24] Daré LO, Bruand PE, Gérard D, et al. Associations of mental disorders and neurotropic parasitic diseases: a meta-analysis in developing and emerging countries. BMC Public Health, 2019; 19, 1645. doi:  10.1186/s12889-019-7933-4
[25] Sutterland AL, Kuin A, Kuiper B, et al. Driving us mad: the association of Toxoplasma gondii with suicide attempts and traffic accidents - a systematic review and meta-analysis. Psychol Med, 2019; 49, 1608−23. doi:  10.1017/S0033291719000813
[26] Sutterland AL, Fond G, Kuin A, et al. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psychiatr Scand, 2015; 132, 161−79. doi:  10.1111/acps.12423
[27] Monroe JM, Buckley PF, Miller BJ. Meta-analysis of anti-Toxoplasma gondii IgM antibodies in acute psychosis. Schizophr Bull, 2015; 41, 989−98. doi:  10.1093/schbul/sbu159
[28] Montazeri M, Moradi E, Moosazadeh M, et al. Relationship between Toxoplasma gondii infection and psychiatric disorders in Iran: a systematic review with meta-analysis. PLoS One, 2023; 18, e0284954. doi:  10.1371/journal.pone.0284954
[29] Piekarski G, Zippelius HM, Witting PA. Auswirkungen einer latenten Toxoplasma-infektion auf das lernvermögen von weissen laboratoriumsratten und -mäusen. Z Parasitenkd, 1978; 57, 1−15. doi:  10.1007/BF00927625
[30] Daniels BP, Sestito SR, Rouse ST. An expanded task battery in the Morris water maze reveals effects of Toxoplasma gondii infection on learning and memory in rats. Parasitol Int, 2015; 64, 5−12. doi:  10.1016/j.parint.2014.09.002
[31] Vyas A, Kim SK, Giacomini N, et al. Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci USA, 2007; 104, 6442−7. doi:  10.1073/pnas.0608310104
[32] Boillat M, Hammoudi PM, Dogga SK, et al. Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii. Cell Rep, 2020; 30, 320-34. e6.
[33] Webster JP, Kaushik M, Bristow GC, et al. Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J Exp Biol, 2013; 216, 99-112.
[34] Holub D, Flegr J, Dragomirecká E, et al. Differences in onset of disease and severity of psychopathology between toxoplasmosis-related and toxoplasmosis-unrelated schizophrenia. Acta Psychiatr Scand, 2013; 127, 227−38. doi:  10.1111/acps.12031
[35] Sutterland AL, Mounir DA, Ribbens JJ, et al. Toxoplasma gondii infection and clinical characteristics of patients with schizophrenia: a systematic review and meta-analysis. Schizophr Bull Open, 2020; 1, sgaa042. doi:  10.1093/schizbullopen/sgaa042
[36] Brüne M. Schizophrenia as parasitic behavior manipulation: can we put together the pieces of an evolutionary puzzle? World Psychiatry, 2020; 19, 119-20.
[37] Stibbs HH. Changes in brain concentrations of catecholamines and indoleamines in Toxoplasma gondii infected mice. Ann Trop Med Parasitol, 1985; 79, 153−7. doi:  10.1080/00034983.1985.11811902
[38] Ibrahim Ali M, Abdel Gawad Mousa Ismail M, Abd-Elftah Abd-Allah G, et al. Toxoplasmosis in schizophrenic patients: immune-diagnosis and serum dopamine level. Pak J Biol Sci, 2020; 23, 1131−7. doi:  10.3923/pjbs.2020.1131.1137
[39] Omidian M, Asgari Q, Bahreini MS, et al. Acute toxoplasmosis can increase serum dopamine level. J Parasit Dis, 2022; 46, 337−42. doi:  10.1007/s12639-021-01447-1
[40] Prandovszky E, Gaskell E, Martin H, et al. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS One, 2011; 6, e23866. doi:  10.1371/journal.pone.0023866
[41] Gaskell EA, Smith JE, Pinney JW, et al. A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PLoS One, 2009; 4, e4801. doi:  10.1371/journal.pone.0004801
[42] McFarland R, Wang ZT, Jouroukhin Y, et al. AAH2 gene is not required for dopamine-dependent neurochemical and behavioral abnormalities produced by Toxoplasma infection in mouse. Behav Brain Res, 2018; 347, 193−200. doi:  10.1016/j.bbr.2018.03.023
[43] Afonso C, Paixão VB, Klaus A, et al. Toxoplasma-induced changes in host risk behaviour are independent of parasite-derived AaaH2 tyrosine hydroxylase. Sci Rep, 2017; 7, 13822. doi:  10.1038/s41598-017-13229-y
[44] Strobl JS, Goodwin DG, Rzigalinski BA, et al. Dopamine stimulates propagation of Toxoplasma gondii tachyzoites in human fibroblast and primary neonatal rat astrocyte cell cultures. J Parasitol, 2012; 98, 1296−9. doi:  10.1645/GE-2760.1
[45] David CN, Frias ES, Szu JI, et al. GLT-1-dependent disruption of CNS glutamate homeostasis and neuronal function by the protozoan parasite Toxoplasma gondii. PLoS Pathog, 2016; 12, e1005643. doi:  10.1371/journal.ppat.1005643
[46] Acquarone M, Poleto A, Perozzo AF, et al. Social preference is maintained in mice with impaired startle reflex and glutamate/D-serine imbalance induced by chronic cerebral toxoplasmosis. Sci Rep, 2021; 11, 14029. doi:  10.1038/s41598-021-93504-1
[47] Lucchese G. From toxoplasmosis to schizophrenia via NMDA dysfunction: peptide overlap between Toxoplasma gondii and N-methyl-D-aspartate receptors as a potential mechanistic link. Front Psychiatry, 2017; 8, 37.
[48] Brooks JM, Carrillo GL, Su JM, et al. Toxoplasma gondii infections alter GABAergic synapses and signaling in the central nervous system. mBio, 2015; 6, e01428−15.
[49] Pearce BD, Massa N, Goldsmith DR, et al. Toxoplasma gondii effects on the relationship of kynurenine pathway metabolites to acoustic startle latency in schizophrenia vs. control subjects. Front Psychiatry, 2020; 11, 552743. doi:  10.3389/fpsyt.2020.552743
[50] Mahmoud ME, Ihara F, Fereig RM, et al. Induction of depression-related behaviors by reactivation of chronic Toxoplasma gondii infection in mice. Behav Brain Res, 2016; 298, 125−33. doi:  10.1016/j.bbr.2015.11.005
[51] Konradt C, Ueno N, Christian DA, et al. Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system. Nat Microbiol, 2016; 1, 16001. doi:  10.1038/nmicrobiol.2016.1
[52] Kim H, Hong SH, Jeong HE, et al. Microfluidic model for in vitro acute Toxoplasma gondii infection and transendothelial migration. Sci Rep, 2022; 12, 11449. doi:  10.1038/s41598-022-15305-4
[53] Estato V, Stipursky J, Gomes F, et al. The neurotropic parasite Toxoplasma gondii induces sustained neuroinflammation with microvascular dysfunction in infected mice. Am J Pathol, 2018; 188, 2674−87. doi:  10.1016/j.ajpath.2018.07.007
[54] Hamdani N, Bengoufa D, Godin O, et al. Immunoglobulin sub-class distribution in bipolar disorder and schizophrenia: potential relationship with latent Toxoplasma Gondii infection. BMC Psychiatry, 2018; 18, 239. doi:  10.1186/s12888-018-1821-9
[55] Fond G, Boyer L, Schürhoff F, et al. Latent toxoplasma infection in real-world schizophrenia: Results from the national FACE-SZ cohort. Schizophr Res, 2018; 201, 373−80. doi:  10.1016/j.schres.2018.05.007
[56] Marcos AC, Siqueira M, Alvarez-Rosa L, et al. Toxoplasma gondii infection impairs radial glia differentiation and its potential to modulate brain microvascular endothelial cell function in the cerebral cortex. Microvasc Res, 2020; 131, 104024. doi:  10.1016/j.mvr.2020.104024
[57] Schneider CA, Figueroa Velez DX, Orchanian SB, et al. Toxoplasma gondii dissemination in the brain is facilitated by infiltrating peripheral immune cells. mBio, 2022; 13, e0283822. doi:  10.1128/mbio.02838-22
[58] Castaño Barrios L, Da Silva Pinheiro AP, Gibaldi D, et al. Behavioral alterations in long-term Toxoplasma gondii infection of C57BL/6 mice are associated with neuroinflammation and disruption of the blood brain barrier. PLoS One, 2021; 16, e0258199. doi:  10.1371/journal.pone.0258199
[59] Carrillo GL, Su JM, Cawley ML, et al. Complement-dependent loss of inhibitory synapses on pyramidal neurons following Toxoplasma gondii infection. J Neurochem, 2023.
[60] Xiao JC, Li Y, Rowley T, et al. Immunotherapy targeting the PD-1 pathway alleviates neuroinflammation caused by chronic Toxoplasma infection. Sci Rep, 2023; 13, 1288. doi:  10.1038/s41598-023-28322-8
[61] Romero Núñez E, Blanco Ayala T, Vázquez Cervantes GI, et al. Pregestational exposure to T. gondii produces maternal antibodies that recognize fetal brain mimotopes and induces neurochemical and behavioral dysfunction in the offspring. Cells, 2022; 11, 3819. doi:  10.3390/cells11233819
[62] Bi XL, Fu XY, Xue S, et al. Expression of CD47 and its ligands in pregnant mice infected with Toxoplasma gondii during pregnancy. Chin J Schistosomiasis Control, 2023; 35, 51−62. (In Chinese
[63] Haroon F, Händel U, Angenstein F, et al. Toxoplasma gondii actively inhibits neuronal function in chronically infected mice. PLoS One, 2012; 7, e35516. doi:  10.1371/journal.pone.0035516
[64] de la Luz Galván-Ramírez M, Salas-Lais AG, Dueñas-Jiménez SH, et al. Kinematic locomotion changes in C57BL/6 mice infected with Toxoplasma strain ME49. Microorganisms, 2019; 7, 573. doi:  10.3390/microorganisms7110573
[65] Barbosa JL, Béla SR, Ricci MF, et al. Spontaneous T. gondii neuronal encystment induces structural neuritic network impairment associated with changes of tyrosine hydroxilase expression. Neurosci Lett, 2020; 718, 134721. doi:  10.1016/j.neulet.2019.134721
[66] Wu MY, Cai R, Li YF, et al. Dynamic pathological changes of Toxoplasma cysts in mouse brain during chronic infection. Acta Univ Med Anhui, 2023; 58, 184−8. (In Chinese
[67] Ingram WM, Goodrich LM, Robey EA, et al. Mice infected with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine, even after extensive parasite clearance. PLoS One, 2013; 8, e75246. doi:  10.1371/journal.pone.0075246
[68] Xiao JC, Li Y, Prandovszky E, et al. Behavioral abnormalities in a mouse model of chronic toxoplasmosis are associated with MAG1 antibody levels and cyst burden. PLoS Negl Trop Dis, 2016; 10, e0004674. doi:  10.1371/journal.pntd.0004674
[69] Carrillo GL, Ballard VA, Glausen T, et al. Toxoplasma infection induces microglia-neuron contact and the loss of perisomatic inhibitory synapses. Glia, 2020; 68, 1968−86. doi:  10.1002/glia.23816
[70] Braun L, Brenier-Pinchart MP, Hammoudi PM, et al. The Toxoplasma effector TEEGR promotes parasite persistence by modulating NF-κB signalling via EZH2. Nat Microbiol, 2019; 4, 1208−20. doi:  10.1038/s41564-019-0431-8
[71] Rovira P, Gutiérrez B, Sorlózano-Puerto A, et al. Toxoplasma gondii seropositivity interacts with catechol-O-methyltransferase Val105/158Met variation increasing the risk of schizophrenia. Genes, 2022; 13, 1088. doi:  10.3390/genes13061088
[72] Ansari-Lari M, Zendehboodi Z, Masoudian M, et al. Additive effect of glutathione S-transferase T1 active genotype and infection with Toxoplasma gondii for increasing the risk of schizophrenia. Nord J Psychiatry, 2021; 75, 275−80. doi:  10.1080/08039488.2020.1843711
[73] Tyebji S, Hannan AJ, Tonkin CJ. Pathogenic infection in male mice changes sperm small RNA profiles and transgenerationally alters offspring behavior. Cell Rep, 2020; 31, 107573. doi:  10.1016/j.celrep.2020.107573
[74] Sun XH, Wang T, Wang YL, et al. Downregulation of lncRNA-11496 in the brain contributes to microglia apoptosis via regulation of Mef2c in chronic T. gondii infection mice. Front Mol Neurosci, 2020; 13, 77. doi:  10.3389/fnmol.2020.00077
[75] Wang ZX, Xiong SS, Sun XH, et al. Differential expression and action mechanism of lncRNA102796 in the brain of mice with chronic infection of Toxoplasma gondii. Chin J Parasitol Parasit Dis, 2022; 40, 187−93. (In Chinese
[76] Castaño BL, Silva AA, Hernandez-Velasco LL, et al. Sulfadiazine plus pyrimethamine therapy reversed multiple behavioral and neurocognitive changes in long-term chronic toxoplasmosis by reducing brain cyst load and inflammation-related alterations. Front Immunol, 2022; 13, 822567. doi:  10.3389/fimmu.2022.822567
[77] Enshaeieh M, Saadatnia G, Babaie J, et al. Valproic acid inhibits chronic Toxoplasma infection and associated brain inflammation in mice. Antimicrob Agents Chemother, 2021; 65, e0100321. doi:  10.1128/AAC.01003-21
[78] Martynowicz J, Augusto L, Wek RC, et al. Guanabenz reverses a key behavioral change caused by latent toxoplasmosis in mice by reducing neuroinflammation. mBio, 2019; 10, e00381−19.
[79] Sagud M, Vlatkovic S, Svob Strac D, et al. Latent Toxoplasma gondii infection is associated with decreased serum triglyceride to high-density lipoprotein cholesterol ratio in male patients with schizophrenia. Compr Psychiatry, 2018; 82, 115−20. doi:  10.1016/j.comppsych.2018.02.002
[80] Xu F, Ma XY, Zhu YW, et al. Effects of Toxoplasma gondii infection and schizophrenia comorbidity on serum lipid profile: a population retrospective study from Eastern China. Microb Pathog, 2020; 149, 104587. doi:  10.1016/j.micpath.2020.104587
[81] Borráz-León JI, Rantala MJ, Luoto S, et al. Toxoplasma gondii and psychopathology: latent infection is associated with interpersonal sensitivity, psychoticism, and higher testosterone levels in men, but not in women. Adapt Human Behav Physiol, 2021; 7, 28−42. doi:  10.1007/s40750-020-00160-2
[82] Osman E, Mohammad Zahariluddin AS, Sharip S, et al. Metabolomic profiling reveals common metabolic alterations in plasma of patients with Toxoplasma infection and schizophrenia. Genes, 2022; 13, 1482. doi:  10.3390/genes13081482
[83] Kankova S, Bicikova M, Macova L, et al. Latent toxoplasmosis and vitamin D concentration in humans: three observational studies. Folia Parasitol, 2021; 68, 2021.005.
[84] Correa Leite PE, de Araujo Portes J, Pereira MR, et al. Morphological and biochemical repercussions of Toxoplasma gondii infection in a 3D human brain neurospheres model. Brain Behav Immun Health, 2020; 11, 100190.
[85] Halonen SK. Use of in vitro derived human neuronal models to study host-parasite interactions of Toxoplasma gondii in neurons and neuropathogenesis of chronic toxoplasmosis. Front Cell Infect Microbiol, 2023; 13, 1129451. doi:  10.3389/fcimb.2023.1129451
[86] Parks S, Avramopoulos D, Mulle J, et al. HLA typing using genome wide data reveals susceptibility types for infections in a psychiatric disease enriched sample. Brain Behav Immun, 2018; 70, 203−13. doi:  10.1016/j.bbi.2018.03.001
[87] Lori A, Avramopoulos D, Wang AW, et al. Polygenic risk scores differentiate schizophrenia patients with Toxoplasma gondii compared to toxoplasma seronegative patients. Compr Psychiatry, 2021; 107, 152236. doi:  10.1016/j.comppsych.2021.152236
[88] Kannan G, Prandovszky E, Severance E, et al. A new T. gondii mouse model of gene-environment interaction relevant to psychiatric disease. Scientifica, 2018; 2018, 7590958.