[1] |
Landrigan PJ. Air pollution and health. Lancet Public Health, 2017; 2, e4−5. doi: 10.1016/S2468-2667(16)30023-8 |
[2] |
Dominski FH, Lorenzetti Branco JH, Buonanno G, et al. Effects of air pollution on health: a mapping review of systematic reviews and meta-analyses. Environ Res, 2021; 201, 111487. doi: 10.1016/j.envres.2021.111487 |
[3] |
Sheehan MC, Lam J, Navas-Acien A, et al. Ambient air pollution epidemiology systematic review and meta-analysis: a review of reporting and methods practice. Environ Int, 2016; 92-3, 647-56. |
[4] |
Li SX, Xu J, Jiang ZG, et al. Correlation between indoor air pollution and adult respiratory health in Zunyi City in Southwest China: situation in two different seasons. BMC Public Health, 2019; 19, 723. doi: 10.1186/s12889-019-7063-z |
[5] |
WHO. Air Pollution. 2024. https://www.who.int/health-topics/air-pollution#tab=tab_1. [2024-06-29] |
[6] |
Thurston GD, Kipen H, Annesi-Maesano I, et al. A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J, 2017; 49, 1600419. doi: 10.1183/13993003.00419-2016 |
[7] |
Li X, Liu XJ. Effects of PM2.5 on chronic airway diseases: a review of research progress. Atmosphere, 2021; 12, 1068. doi: 10.3390/atmos12081068 |
[8] |
Möller W, Felten K, Sommerer K, et al. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am J Respir Crit Care Med, 2008; 177, 426−32. doi: 10.1164/rccm.200602-301OC |
[9] |
Kirrane EF, Luben TJ, Benson A, et al. A systematic review of cardiovascular responses associated with ambient black carbon and fine particulate matter. Environ Int, 2019; 127, 305−16. doi: 10.1016/j.envint.2019.02.027 |
[10] |
Ko UW, Kyung SY. Adverse effects of air pollution on pulmonary diseases. Tuberc Respir Dis, 2022; 85, 313−19. doi: 10.4046/trd.2022.0116 |
[11] |
Liu S, Jørgensen JT, Ljungman P, et al. Long-term exposure to low-level air pollution and incidence of asthma: the ELAPSE project. Eur Respir J, 2021; 57, 2003099. doi: 10.1183/13993003.03099-2020 |
[12] |
Chatkin J, Correa L, Santos U. External environmental pollution as a risk factor for asthma. Clin Rev Allergy Immunol, 2022; 62, 72−89. doi: 10.1007/s12016-020-08830-5 |
[13] |
Khreis H, Kelly C, Tate J, et al. Exposure to traffic-related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis. Environ Int, 2017; 100, 1−31. doi: 10.1016/j.envint.2016.11.012 |
[14] |
Lu X, Li RQ, Yan XX. Airway hyperresponsiveness development and the toxicity of PM2.5. Environ Sci Pollut Res, 2021; 28, 6374−91. doi: 10.1007/s11356-020-12051-w |
[15] |
Reddel HK, Bacharier LB, Bateman ED, et al. Global initiative for asthma strategy 2021: executive summary and rationale for key changes. Am J Respir Crit Care Med, 2022; 205, 17−35. doi: 10.1164/rccm.202109-2205PP |
[16] |
GINA. Global strategy for asthma management and prevention (2024 update). https://www.medscape.co.uk/viewarticle/guideline-essentials-2024-gina-strategy-asthma-management-2024a1000axj. [2024-06-29] |
[17] |
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2017; 390, 1211−59. doi: 10.1016/S0140-6736(17)32154-2 |
[18] |
Lewis LM, Mirabelli MC, Beavers SF, et al. Characterizing environmental asthma triggers and healthcare use patterns in Puerto Rico. J Asthma, 2020; 57, 886−97. doi: 10.1080/02770903.2019.1612907 |
[19] |
Huang KW, Yang T, Xu JY, et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study. Lancet, 2019; 394, 407−18. doi: 10.1016/S0140-6736(19)31147-X |
[20] |
Perez L, Declercq C, Iñiguez C, et al. Chronic burden of near-roadway traffic pollution in 10 European cities (APHEKOM network). Eur Respir J, 2013; 42, 594−605. doi: 10.1183/09031936.00031112 |
[21] |
Hoffmann C, Maglakelidze M, Von Schneidemesser E, et al. Asthma and COPD exacerbation in relation to outdoor air pollution in the metropolitan area of Berlin, Germany. Respir Res, 2022; 23, 64. doi: 10.1186/s12931-022-01983-1 |
[22] |
Abramson MJ, Wigmann C, Altug H, et al. Ambient air pollution is associated with airway inflammation in older women: a nested cross-sectional analysis. BMJ Open Respir Res, 2020; 7, e000549. doi: 10.1136/bmjresp-2019-000549 |
[23] |
Halayko AJ, Pascoe CD, Gereige JD, et al. Update in adult asthma 2020. Am J Respir Crit Care Med, 2021; 204, 395−402. doi: 10.1164/rccm.202103-0552UP |
[24] |
Fu SH, Zhou J, Ye XF, et al. Effect of hypothermia combined with PM2.5 on airway inflammation in asthmatic mice. China Environ Sci, 2021; 41, 3343−48. |
[25] |
Lu XX, Huang JW, Cui HY, et al. The effect of combined exposure of low concentration formaldehyde and PM2.5 on asthma model mice. China Environ Sci, 2020; 40, 1335−44. (In Chinese |
[26] |
Gong Y, Dong L, Zhu N, et al. Comparison between DP2 antagonist and inhaled corticosteroid in the treatment of airway inflammation in bronchial asthma mice model. J Clin Pulm Med, 2015; 20, 841−44,845. (In Chinese |
[27] |
Lu C, Wang FM, Qiao ZP, et al. Extreme temperatures exacerbated oxidative stress and airway inflammation in a mouse model of allergic asthma. Allergy, 2024; 79, 1333−35. doi: 10.1111/all.15883 |
[28] |
Lu C, Wang FM, Liu Q, et al. Effect of NO2 exposure on airway inflammation and oxidative stress in asthmatic mice. J Hazard Mater, 2023; 457, 131787. doi: 10.1016/j.jhazmat.2023.131787 |
[29] |
Lu C, Liu Q, Deng MM, et al. Interaction of high temperature and NO2 exposure on asthma risk: in vivo experimental evidence of inflammation and oxidative stress. Sci Total Environ, 2023; 869, 161760. doi: 10.1016/j.scitotenv.2023.161760 |
[30] |
Hossain MS, Frey HC, Louie PKK, et al. Combined effects of increased O3 and reduced NO2 concentrations on short-term air pollution health risks in Hong Kong. Environ Pollut, 2021; 270, 116280. doi: 10.1016/j.envpol.2020.116280 |
[31] |
Rovira J, Domingo JL, Schuhmacher M. Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Sci Total Environ, 2020; 703, 135538. doi: 10.1016/j.scitotenv.2019.135538 |
[32] |
Glencross DA, Ho TR, Camiña N, et al. Air pollution and its effects on the immune system. Free Radical Biol Med, 2020; 151, 56−68. doi: 10.1016/j.freeradbiomed.2020.01.179 |
[33] |
Wade RS, Castro CE. Reactions of oxymyoglobin with NO, NO2, and NO2- under argon and in air. Chem Res Toxicol, 1996; 9, 1382−90. doi: 10.1021/tx9600457 |
[34] |
Tripathy S, Marsland AL, Kinnee EJ, et al. Long-term ambient air pollution exposures and circulating and stimulated inflammatory mediators in a cohort of midlife adults. Environ Health Perspect, 2021; 129, 57007. doi: 10.1289/EHP7089 |
[35] |
Klümper C, Krämer U, Lehmann I, et al. Air pollution and cytokine responsiveness in asthmatic and non-asthmatic children. Environ Res, 2015; 138, 381−90. doi: 10.1016/j.envres.2015.02.034 |
[36] |
De Groot LES, Liu DY, Dierdorp BS, et al. Ex vivo innate responses to particulate matter from livestock farms in asthma patients and healthy individuals. Environ Health, 2020; 19, 78. doi: 10.1186/s12940-020-00632-8 |
[37] |
Hirose K, Iwata A, Tamachi T, et al. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol Rev, 2017; 278, 145−61. doi: 10.1111/imr.12540 |
[38] |
Li SM, Zhang M, Wang P, et al. The significance of a non-invasive measurement of lung function in mice. Acta Lab Anim Sci Sin, 2018; 26, 548−53. (In Chinese |