[1] |
Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol, 2019; 74, 2529−32. doi: 10.1016/j.jacc.2019.10.009 |
[2] |
Mensah GA, Fuster V, Murray CJL, et al. Global burden of cardiovascular diseases and risks, 1990-2022. J Am Coll Cardiol, 2023; 82, 2350−473. doi: 10.1016/j.jacc.2023.11.007 |
[3] |
Martin SS, Aday AW, Almarzooq ZI, et al. 2024 Heart disease and stroke statistics: a report of US and global data from the American heart association. Circulation, 2024; 149, e347−913. |
[4] |
Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol, 2020; 76, 2982−3021. doi: 10.1016/j.jacc.2020.11.010 |
[5] |
Stanton AA. Are we sure we know the risk factors for cardiovascular disease? J Am Coll Cardiol, 2023; 81, 2255-7. |
[6] |
Bhatnagar A. Environmental determinants of cardiovascular disease. Circ Res, 2017; 121, 162−80. doi: 10.1161/CIRCRESAHA.117.306458 |
[7] |
Münzel T, Hahad O, Sørensen M, et al. Environmental risk factors and cardiovascular diseases: a comprehensive expert review. Cardiovasc Res, 2022; 118, 2880−902. doi: 10.1093/cvr/cvab316 |
[8] |
Lu LY, Ni R. Association between polycyclic aromatic hydrocarbon exposure and hypertension among the U. S. adults in the NHANES 2003-2016: a cross-sectional study. Environ Res, 2023; 217, 114907. doi: 10.1016/j.envres.2022.114907 |
[9] |
Tian YH, Zhang J, Huang CY, et al. Ambient polycyclic aromatic hydrocarbons and cardiovascular disease in China. J Hazard Mater, 2025; 491, 137948. doi: 10.1016/j.jhazmat.2025.137948 |
[10] |
Gao P, da Silva E, Hou L, et al. Human exposure to polycyclic aromatic hydrocarbons: metabolomics perspective. Environ Int, 2018; 119, 466−77. doi: 10.1016/j.envint.2018.07.017 |
[11] |
Jia XQ, Li Y, Jin L, et al. Association of co-exposure to polycyclic aromatic hydrocarbons and metal(loid)s with the risk of neural tube defects: a case-control study in Northern China. Biomed Environ Sci, 2025; 38, 154−66. |
[12] |
Li Y, Lin D, Zhang XQ, et al. Changes in the non-targeted metabolomic profile of three-year-old toddlers with elevated exposure to polycyclic aromatic hydrocarbons. Biomed Environ Sci, 2024; 37, 479−93. |
[13] |
Cachada A, Pato P, Rocha-Santos T, et al. Levels, sources and potential human health risks of organic pollutants in urban soils. Sci Total Environ, 2012; 430, 184−92. doi: 10.1016/j.scitotenv.2012.04.075 |
[14] |
Chen HW. Distribution and risk assessment of polycyclic aromatic hydrocarbons in household drinking water. Bull Environ Contam Toxicol, 2007; 78, 201−5. doi: 10.1007/s00128-007-9124-8 |
[15] |
Wang Z, Ren PF, Sun Y, et al. Gas/particle partitioning of polycyclic aromatic hydrocarbons in coastal atmosphere of the north Yellow Sea, China. Environ Sci Pollut Res Int, 2013; 20, 5753−63. doi: 10.1007/s11356-013-1588-y |
[16] |
Marques C, Fiolet T, Frenoy P, et al. Association between polycyclic aromatic hydrocarbons (PAH) dietary exposure and mortality risk in the E3N cohort. Sci Total Environ, 2022; 840, 156626. doi: 10.1016/j.scitotenv.2022.156626 |
[17] |
Yin WJ, Hou J, Xu T, et al. Obesity mediated the association of exposure to polycyclic aromatic hydrocarbon with risk of cardiovascular events. Sci Total Environ, 2018; 616-617, 841-54. |
[18] |
Shimada T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet, 2006; 21, 257−76. doi: 10.2133/dmpk.21.257 |
[19] |
Bhatnagar A. Environmental cardiology: studying mechanistic links between pollution and heart disease. Circ Res, 2006; 99, 692−705. doi: 10.1161/01.RES.0000243586.99701.cf |
[20] |
Mallah MA, Mallah MA, Liu Y, et al. Relationship between polycyclic aromatic hydrocarbons and cardiovascular diseases: a systematic review. Front Public Health, 2021; 9, 763706. doi: 10.3389/fpubh.2021.763706 |
[21] |
Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American college of cardiology/American heart association task force on practice guidelines. Circulation, 2014; 129, S49−73. |
[22] |
D'Agostino Sr RB, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the framingham heart study. Circulation, 2008; 117, 743−53. doi: 10.1161/CIRCULATIONAHA.107.699579 |
[23] |
Conroy RM, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J, 2003; 24, 987−1003. doi: 10.1016/S0195-668X(03)00114-3 |
[24] |
SCORE2 Working Group and ESC Cardiovascular Risk Collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J, 2021; 42, 2439−54. doi: 10.1093/eurheartj/ehab309 |
[25] |
The WHO CVD Risk Chart Working Group. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health, 2019; 7, e1332−45. doi: 10.1016/S2214-109X(19)30318-3 |
[26] |
Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ, 2017; 357, j2099. |
[27] |
Yang XL, Li JX, Hu DS, et al. Predicting the 10-year risks of atherosclerotic cardiovascular disease in Chinese population: the China-PAR project (prediction for ASCVD risk in China). Circulation, 2016; 134, 1430−40. doi: 10.1161/CIRCULATIONAHA.116.022367 |
[28] |
Khan SS, Matsushita K, Sang YY, et al. Development and validation of the American heart association's PREVENT equations. Circulation, 2024; 149, 430−49. doi: 10.1161/CIRCULATIONAHA.123.067626 |
[29] |
van Daalen KR, Zhang DD, Kaptoge S, et al. Risk estimation for the primary prevention of cardiovascular disease: considerations for appropriate risk prediction model selection. Lancet Glob Health, 2024; 12, e1343−58. doi: 10.1016/S2214-109X(24)00210-9 |
[30] |
Lee M, Saha A, Sundaram R, et al. Accommodating detection limits of multiple exposures in environmental mixture analyses: an overview of statistical approaches. Environ Health, 2024; 23, 48. doi: 10.1186/s12940-024-01088-w |
[31] |
Inker LA, Eneanya ND, Coresh J, et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med, 2021; 385, 1737−49. doi: 10.1056/NEJMoa2102953 |
[32] |
AHA PREVENT online calculator. Accessed September 17, 2025. https://professional.heart.org/en/guidelines-and-statements/prevent-risk-calculator/prevent-calculator |
[33] |
Tsai J, Homa DM, Neff LJ, et al. Trends in secondhand smoke exposure, 2011-2018: impact and implications of expanding serum cotinine range. Am J Prev Med, 2021; 61, e109−17. doi: 10.1016/j.amepre.2021.04.004 |
[34] |
Jiang MM, Zhao H. Joint association of heavy metals and polycyclic aromatic hydrocarbons exposure with depression in adults. Environ Res, 2024; 242, 117807. doi: 10.1016/j.envres.2023.117807 |
[35] |
Di DS, Zhang RY, Zhou HL, et al. Exposure to phenols, chlorophenol pesticides, phthalate and PAHs and mortality risk: a prospective study based on 6 rounds of NHANES. Chemosphere, 2023; 329, 138650. doi: 10.1016/j.chemosphere.2023.138650 |
[36] |
Keil AP, Buckley JP, O'Brien KM, et al. A quantile-based g-computation approach to addressing the effects of exposure mixtures. Environ Health Perspect, 2020; 128, 047004. doi: 10.1289/EHP5838 |
[37] |
Hu C, Hou J, Zhou Y, et al. Association of polycyclic aromatic hydrocarbons exposure with atherosclerotic cardiovascular disease risk: a role of mean platelet volume or club cell secretory protein. Environ Pollut, 2018; 233, 45−53. doi: 10.1016/j.envpol.2017.10.042 |
[38] |
Cao LM, Wang DM, Zhu CM, et al. Polycyclic aromatic hydrocarbon exposure and atherosclerotic cardiovascular disease risk in urban adults: the mediating role of oxidatively damaged DNA. Environ Pollut, 2020; 265, 114860. doi: 10.1016/j.envpol.2020.114860 |
[39] |
Hou J, Sun HZ, Guo YJ, et al. Associations between urinary monohydroxy polycyclic aromatic hydrocarbons metabolites and Framingham Risk Score in Chinese adults with low lung function. Ecotoxicol Environ Saf, 2018; 147, 1002−9. doi: 10.1016/j.ecoenv.2017.09.058 |
[40] |
Minhas AMK, Virani SS, Michos ED, et al. Comparing cardiovascular risk classification of U. S. adults according to pooled cohort equations and PREVENT equations: cross-sectional analysis of the national health and nutrition examination survey. Ann Intern Med, 2024; 177, 1444−8. doi: 10.7326/ANNALS-24-00074 |
[41] |
Scheuermann B, Brown A, Colburn T, et al. External validation of the American heart association PREVENT cardiovascular disease risk equations. JAMA Netw Open, 2024; 7, e2438311. doi: 10.1001/jamanetworkopen.2024.38311 |
[42] |
Grant JK, Ndumele CE, Martin SS. The evolving landscape of cardiovascular risk assessment. JAMA, 2024; 332, 967−9. doi: 10.1001/jama.2024.13247 |
[43] |
Anderson TS, Wilson LM, Sussman JB. Atherosclerotic cardiovascular disease risk estimates using the predicting risk of cardiovascular disease events equations. JAMA Intern Med, 2024; 184, 963−70. doi: 10.1001/jamainternmed.2024.1302 |
[44] |
Alshaarawy O, Elbaz HA, Andrew ME. The association of urinary polycyclic aromatic hydrocarbon biomarkers and cardiovascular disease in the US population. Environ Int, 2016; 89-90, 174-8. |
[45] |
Xu XH, Cook RL, Ilacqua VA, et al. Studying associations between urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and cardiovascular diseases in the United States. Sci Total Environ, 2010; 408, 4943−8. doi: 10.1016/j.scitotenv.2010.07.034 |
[46] |
Duan SY, Wu YF, Zhu JM, et al. Associations of polycyclic aromatic hydrocarbons mixtures with cardiovascular diseases mortality and all-cause mortality and the mediation role of phenotypic ageing: a time-to-event analysis. Environ Int, 2024; 186, 108616. doi: 10.1016/j.envint.2024.108616 |
[47] |
Mallah MA, Changxing L, Mallah MA, et al. Association of urinary polycyclic aromatic hydrocarbon metabolites and cardiovascular disease among US population: a cross-sectional study. Environ Res, 2022; 209, 112775. doi: 10.1016/j.envres.2022.112775 |
[48] |
Brook RD, Rajagopalan S, Pope III CA, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American heart association. Circulation, 2010; 121, 2331−78. doi: 10.1161/CIR.0b013e3181dbece1 |
[49] |
Miller MR, Shaw CA, Langrish JP. From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Future Cardiol, 2012; 8, 577−602. doi: 10.2217/fca.12.43 |
[50] |
Holme JA, Brinchmann BC, Refsnes M, et al. Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environ Health, 2019; 18, 74. doi: 10.1186/s12940-019-0514-2 |
[51] |
Alhamdow A, Lindh C, Albin M, et al. Early markers of cardiovascular disease are associated with occupational exposure to polycyclic aromatic hydrocarbons. Sci Rep, 2017; 7, 9426. doi: 10.1038/s41598-017-09956-x |