[1] |
Wilson MH, Newman S, Imray CH. The cerebral effects of ascent to high altitudes. Lancet Neurol, 2009; 8, 175−91. doi: 10.1016/S1474-4422(09)70014-6 |
[2] |
Tremblay JC, Ainslie PN. Global and country-level estimates of human population at high altitude. Proc Natl Acad Sci USA, 2021; 118, e2102463118. doi: 10.1073/pnas.2102463118 |
[3] |
Richalet JP, Larmignat P, Poitrine E, et al. Physiological risk factors for severe high-altitude illness: a prospective cohort study. Am J Respir Crit Care Med, 2012; 185, 192−8. doi: 10.1164/rccm.201108-1396OC |
[4] |
Wakhloo D, Scharkowski F, Curto Y, et al. Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat Commun, 2020; 11, 1313. doi: 10.1038/s41467-020-15041-1 |
[5] |
Zhang ZA, Sun YF, Yuan ZY, et al. Insight into the effects of high-altitude hypoxic exposure on learning and memory. Oxid Med Cell Longev, 2022; 2022, 4163188. |
[6] |
Coimbra-Costa D, Alva N, Duran M, et al. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biol, 2017; 12, 216−25. doi: 10.1016/j.redox.2017.02.014 |
[7] |
Iampietro M, Giovannetti T, Tarazi R. Hypoxia and inflammation in children with sickle cell disease: implications for hippocampal functioning and episodic memory. Neuropsychol Rev, 2014; 24, 252−65. doi: 10.1007/s11065-014-9259-4 |
[8] |
Pernet V, Schwab ME. The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res, 2012; 349, 97−104. doi: 10.1007/s00441-012-1432-6 |
[9] |
Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature, 2000; 403, 434−9. doi: 10.1038/35000219 |
[10] |
Cao Y, Shumsky JS, Sabol MA, et al. Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat. Neurorehabil Neural Repair, 2008; 22, 262−78. doi: 10.1177/1545968307308550 |
[11] |
Schweigreiter R. The natural history of the myelin-derived nerve growth inhibitor Nogo-A. Neuron Glia Biol, 2008; 4, 83−9. doi: 10.1017/S1740925X09990147 |
[12] |
Zemmar A, Weinmann O, Kellner Y, et al. Neutralization of Nogo-A enhances synaptic plasticity in the rodent motor cortex and improves motor learning in vivo. J Neurosci, 2014; 34, 8685−98. doi: 10.1523/JNEUROSCI.3817-13.2014 |
[13] |
Vajda F, Jordi N, Dalkara D, et al. Cell type-specific Nogo-A gene ablation promotes axonal regeneration in the injured adult optic nerve. Cell Death Differ, 2015; 22, 323−35. doi: 10.1038/cdd.2014.147 |
[14] |
Seiler S, Widmer HR. Nogo-A and its functions beyond axonal inhibition: the controversial role of Nogo-A in Parkinson's disease. Neural Regen Res, 2015; 10, 1223−4. doi: 10.4103/1673-5374.162749 |
[15] |
Fang YQ, Yao LM, Li CH, et al. The blockage of the Nogo/NgR signal pathway in microglia alleviates the formation of Aβ plaques and tau phosphorylation in APP/PS1 transgenic mice. J Neuroinflammation, 2016; 13, 56. doi: 10.1186/s12974-016-0522-x |
[16] |
Ineichen BV, Plattner PS, Good N, et al. Nogo-A antibodies for progressive multiple sclerosis. CNS Drugs, 2017; 31, 187−98. doi: 10.1007/s40263-017-0407-2 |
[17] |
Wang YY, Han N, Hong DJ, et al. Nogo-A aggravates oxidative damage in oligodendrocytes. Neural Regen Res, 2021; 16, 179−85. doi: 10.4103/1673-5374.286979 |
[18] |
Gil V, Nicolas O, Mingorance A, et al. Nogo-A expression in the human hippocampus in normal aging and in Alzheimer disease. J Neuropathol Exp Neurol, 2006; 65, 433−44. doi: 10.1097/01.jnen.0000222894.59293.98 |
[19] |
Wang H, Yao YJ, Jiang XN, et al. Expression of Nogo-A and NgR in the developing rat brain after hypoxia-ischemia. Brain Res, 2006; 1114, 212−20. doi: 10.1016/j.brainres.2006.07.056 |
[20] |
Wiessner C, Bareyre FM, Allegrini PR, et al. Anti-Nogo-A antibody infusion 24 hours after experimental stroke improved behavioral outcome and corticospinal plasticity in normotensive and spontaneously hypertensive rats. J Cereb Blood Flow Metab, 2003; 23, 154−65. doi: 10.1097/01.WCB.0000040400.30600.AF |
[21] |
Dosek A, Ohno H, Acs Z, et al. High altitude and oxidative stress. Respir Physiol Neurobiol, 2007; 158, 128−31. doi: 10.1016/j.resp.2007.03.013 |
[22] |
Zagrebelsky M, Schweigreiter R, Bandtlow CE, et al. Nogo-A stabilizes the architecture of hippocampal neurons. J Neurosci, 2010; 30, 13220−34. doi: 10.1523/JNEUROSCI.1044-10.2010 |
[23] |
Vallejo D, Codocedo JF, Inestrosa NC. Posttranslational modifications regulate the postsynaptic localization of PSD-95. Mol Neurobiol, 2017; 54, 1759−76. doi: 10.1007/s12035-016-9745-1 |
[24] |
Naisbitt S, Kim E, Tu JC, et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron, 1999; 23, 569−82. doi: 10.1016/S0896-6273(00)80809-0 |
[25] |
Xie LH, Fefelova N, Pamarthi SH, et al. Molecular mechanisms of ferroptosis and relevance to cardiovascular disease. Cells, 2022; 11, 2726. doi: 10.3390/cells11172726 |
[26] |
Szabò I, Leanza L, Gulbins E, et al. Physiology of potassium channels in the inner membrane of mitochondria. Pflügers Arch-Eur J Physiol, 2012; 463, 231−46. |
[27] |
Sui YP, Zhang XX, Lu JL, et al. New insights into the roles of Nogo-A in CNS biology and diseases. Neurochem Res, 2015; 40, 1767−85. doi: 10.1007/s11064-015-1671-5 |
[28] |
Zhang G, Zhou SM, Yuan C, et al. The effects of short-term and long-term exposure to a high altitude hypoxic environment on neurobehavioral function. High Alt Med Biol, 2013; 14, 338−41. doi: 10.1089/ham.2012.1091 |
[29] |
Mairer K, Wille M, Bucher T, et al. Prevalence of acute mountain sickness in the Eastern Alps. High Alt Med Biol, 2009; 10, 239−45. doi: 10.1089/ham.2008.1091 |
[30] |
Maggiorini M, Bühler B, Walter M, et al. Prevalence of acute mountain sickness in the Swiss Alps. BMJ, 1990; 301, 853−5. doi: 10.1136/bmj.301.6756.853 |
[31] |
Delekate A, Zagrebelsky M, Kramer S, et al. NogoA restricts synaptic plasticity in the adult hippocampus on a fast time scale. Proc Natl Acad Sci USA, 2011; 108, 2569−74. doi: 10.1073/pnas.1013322108 |
[32] |
Tang BL. Nogo-A and the regulation of neurotransmitter receptors. Neural Regen Res, 2020; 15, 2037−8. doi: 10.4103/1673-5374.282250 |
[33] |
Wills ZP, Mandel-Brehm C, Mardinly AR, et al. The nogo receptor family restricts synapse number in the developing hippocampus. Neuron, 2012; 73, 466−81. doi: 10.1016/j.neuron.2011.11.029 |
[34] |
Murthy R, Kim J, Sun XK, et al. Post-transcriptional regulation of GABAB receptor and GIRK1 channels by Nogo receptor 1. Mol Brain, 2013; 6, 30. doi: 10.1186/1756-6606-6-30 |
[35] |
Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther, 2017; 360, 201−5. doi: 10.1124/jpet.116.237503 |
[36] |
Chamberlain KA, Sheng ZH. Mechanisms for the maintenance and regulation of axonal energy supply. J Neurosci Res, 2019; 97, 897−913. doi: 10.1002/jnr.24411 |
[37] |
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci, 2018; 19, 63−80. |
[38] |
Sharma C, Kim S, Nam Y, et al. Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer’s disease. Int J Mol Sci, 2021; 22, 4850. doi: 10.3390/ijms22094850 |
[39] |
Auerbach JM, Segal M. Peroxide modulation of slow onset potentiation in rat hippocampus. J Neurosci, 1997; 17, 8695−701. doi: 10.1523/JNEUROSCI.17-22-08695.1997 |