[1] |
Taylor AA, Tsuji JS, Garry MR, et al. Critical review of exposure and effects: implications for setting regulatory health criteria for ingested copper. Environ Manage, 2020; 65, 131−59. doi: 10.1007/s00267-019-01234-y |
[2] |
An YM, Li SN, Huang XQ, et al. The role of copper homeostasis in brain disease. Int J Mol Sci, 2022; 23, 13850. doi: 10.3390/ijms232213850 |
[3] |
Pierson H, Yang HJ, Lutsenko S. Copper transport and disease: what can we learn from organoids? Annu Rev Nutr, 2019; 39, 75-94. |
[4] |
Liu YM, Wang HS, Cui YY, et al. Removal of copper ions from wastewater: a review. Int J Environ Res Public Health, 2023; 20, 3885. doi: 10.3390/ijerph20053885 |
[5] |
Zeki ÖC, Eylem CC, Reçber T, et al. Integration of GC-MS and LC-MS for untargeted metabolomics profiling. J Pharm Biomed Anal, 2020; 190, 113509. doi: 10.1016/j.jpba.2020.113509 |
[6] |
Gao YF, Yu T, Ai F, et al. Bacillus coagulans XY2 ameliorates copper-induced toxicity by bioadsorption, gut microbiota and lipid metabolism regulation. J Hazard Mater, 2023; 445, 130585. doi: 10.1016/j.jhazmat.2022.130585 |
[7] |
Lin HF, Wang LF, Jiang XQ, et al. Glutathione dynamics in subcellular compartments and implications for drug development. Curr Opin Chem Biol, 2024; 81, 102505. doi: 10.1016/j.cbpa.2024.102505 |
[8] |
Holeček M. Roles of malate and aspartate in gluconeogenesis in various physiological and pathological states. Metabolism, 2023; 145, 155614. doi: 10.1016/j.metabol.2023.155614 |
[9] |
Shen ZH, Xiang M, Chen C, et al. Glutamate excitotoxicity: potential therapeutic target for ischemic stroke. Biomed Pharmacother, 2022; 151, 113125. doi: 10.1016/j.biopha.2022.113125 |
[10] |
Jones MG, Andriotis OG, Roberts JJ, et al. Nanoscale dysregulation of collagen structure-function disrupts mechano-homeostasis and mediates pulmonary fibrosis. eLife, 2018; 7, e36354. doi: 10.7554/eLife.36354 |