[1] Zhang H, Huang CL, Gu XY, et al. 3-year outcomes of discharged survivors of COVID-19 following the SARS-CoV-2 omicron (B. 1.1. 529) wave in 2022 in China: a longitudinal cohort study. Lancet Respir Med, 2024; 12, 55−66. doi:  10.1016/S2213-2600(23)00387-9
[2] Ballering AV, van Zon SKR, Olde Hartman TC, et al. Persistence of somatic symptoms after COVID-19 in the netherlands: an observational cohort study. Lancet, 2022; 400, 452−61. doi:  10.1016/S0140-6736(22)01214-4
[3] Kaya Y, Kaya C, Kartal T, et al. Could LUTS be early symptoms of COVID-19. Int J Clin Pract, 2021; 75, e13850.
[4] Tiryaki S, Egil O, Birbilen AZ, et al. COVID-19 associated lower urinary tract symptoms in children. J Pediatr Urol, 2022; 18, 680.e1−7. doi:  10.1016/j.jpurol.2022.08.018
[5] Khullar V, Lemmon B, Acar O, et al. Does COVID-19 cause or worsen LUT dysfunction, what are the mechanisms and possible treatments? ICI-RS 2023. Neurourol Urodyn, 2024; 43, 1458−63. doi:  10.1002/nau.25441
[6] Abrams P, Cardozo L, Fall M, et al. The standardisation of terminology of lower urinary tract function: report from the standardisation sub-committee of the international continence society. Am J Obstet Gynecol, 2002; 187, 116−26. doi:  10.1067/mob.2002.125704
[7] Irwin DE, Milsom I, Hunskaar S, et al. Population-based survey of urinary incontinence, overactive bladder, and other lower urinary tract symptoms in five countries: results of the EPIC study. Eur Urol, 2006; 50, 1306−15. doi:  10.1016/j.eururo.2006.09.019
[8] Zhang L, Zhu L, Xu T, et al. A population-based survey of the prevalence, potential risk factors, and symptom-specific bother of lower urinary tract symptoms in adult Chinese women. Eur Urol, 2015; 68, 97−112. doi:  10.1016/j.eururo.2014.12.012
[9] Wang XJ, Wang HY, Xu P, et al. Epidemiological trends and risk factors related to lower urinary tract symptoms around childbirth: A one-year prospective study. BMC Public Health, 2023; 23, 2134. doi:  10.1186/s12889-023-17065-w
[10] Wu JM, Matthews CA, Conover MM, et al. Lifetime risk of stress urinary incontinence or pelvic organ prolapse surgery. Obstet Gynecol, 2014; 123, 1201−6. doi:  10.1097/AOG.0000000000000286
[11] Blomquist JL, Muñoz A, Carroll M, et al. Association of delivery mode with pelvic floor disorders after childbirth. JAMA, 2018; 320, 2438−47. doi:  10.1001/jama.2018.18315
[12] Pang H, Zhang L, Han S, et al. A nationwide population-based survey on the prevalence and risk factors of symptomatic pelvic organ prolapse in adult women in China - a pelvic organ prolapse quantification system-based study. BJOG, 2021; 128, 1313−23. doi:  10.1111/1471-0528.16675
[13] Milsom I, Gyhagen M. Breaking news in the prediction of pelvic floor disorders. Best Pract Res Clin Obstet Gynaecol, 2019; 54, 41−8. doi:  10.1016/j.bpobgyn.2018.05.004
[14] Daryanto B, Janardhana A, Purnomo AF. The effect of covid-19 severity on lower urinary tract symptoms manifestations. Med Arch, 2022; 76, 127−30. doi:  10.5455/medarh.2022.76.127-130
[15] Mumm JN, Osterman A, Ruzicka M, et al. Urinary frequency as a possibly overlooked symptom in COVID-19 patients: does sars-cov-2 cause viral cystitis? Eur Urol, 2020; 78, 624-8.
[16] Dhar N, Dhar S, Timar R, et al. De novo urinary symptoms associated with COVID-19: COVID-19-associated cystitis. J Clin Med Res, 2020; 12, 681−2. doi:  10.14740/jocmr4294
[17] Ferrari A, Corazza I, Mannella P, et al. Influence of the COVID-19 pandemic on self-reported urinary incontinence during pregnancy and postpartum: a prospective study. Int J Gynaecol Obstet, 2023; 160, 187−94. doi:  10.1002/ijgo.14522
[18] de Castro Sousa F, Estevam LF, Silva EP, et al. Possible association of urinary incontinence with post-COVID-19: a report of three cases. J Infect Dev Ctries, 2023; 17, 1544−8. doi:  10.3855/jidc.17431
[19] Prudencio CB, Nunes SK, Pinheiro FA, et al. Gestational diabetes is associated with alteration on pelvic floor muscle activation pattern during pregnancy and postpartum: Prospective cohort using electromyography assessment. Front Endocrinol (Lausanne), 2022; 13, 958909. doi:  10.3389/fendo.2022.958909
[20] Glazer HI, Hacad CR. The glazer protocol: evidence-based medicine pelvic floor muscle (PFM) surface electromyography (SEMG). Biofeedback, 2012; 40, 75−9. doi:  10.5298/1081-5937-40.2.4
[21] Min L, Xudong D, Qiubo L, et al. Two year follow-up and comparison of pelvic floor muscle electromyography after first vaginal delivery with and without episiotomy and its correlation with urinary incontinence: a prospective cohort study. Acta Obstet Gynecol Scand, 2023; 102, 200−8. doi:  10.1111/aogs.14487
[22] Davis HE, McCorkell L, Vogel JM, et al. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol, 2023; 21, 133−46. doi:  10.1038/s41579-022-00846-2
[23] Soriano JB, Murthy S, Marshall JC, et al. A clinical case definition of post-COVID-19 condition by a delphi consensus. Lancet Infect Dis, 2022; 22, e102−7. doi:  10.1016/S1473-3099(21)00703-9
[24] Uebersax JS, Wyman JF, Shumaker SA, et al. Short forms to assess life quality and symptom distress for urinary incontinence in women: the incontinence impact questionnaire and the urogenital distress inventory. Neurourol Urodyn, 1995; 14, 131−9. doi:  10.1002/nau.1930140206
[25] Chan SSC, Choy KW, Lee BPY, et al. Chinese validation of urogenital distress inventory and incontinence impact questionnaire short form. Int Urogynecol J, 2010; 21, 807−12. doi:  10.1007/s00192-010-1102-8
[26] Glazer HI, Romanzi L, Polaneczky M. Pelvic floor muscle surface electromyography. Reliability and clinical predictive validity. J Reprod Med, 1999; 44, 779−82.
[27] Tähtinen RM, Cartwright R, Tsui JF, et al. Long-term impact of mode of delivery on stress urinary incontinence and urgency urinary incontinence: a systematic review and meta-analysis. Eur Urol, 2016; 70, 148−58. doi:  10.1016/j.eururo.2016.01.037
[28] Hage-Fransen MAH, Wiezer M, Otto A, et al. Pregnancy- and obstetric-related risk factors for urinary incontinence, fecal incontinence, or pelvic organ prolapse later in life: a systematic review and meta-analysis. Acta Obstet Gynecol Scand, 2021; 100, 373−82. doi:  10.1111/aogs.14027
[29] Yang XY, Zhu LL, Li WJ, et al. Comparisons of electromyography and digital palpation measurement of pelvic floor muscle strength in postpartum women with stress urinary incontinence and asymptomatic parturients: a cross-sectional study. Gynecol Obstet Invest, 2019; 84, 599−605. doi:  10.1159/000501825
[30] Ptaszkowski K, Malkiewicz B, Zdrojowy R, et al. The prognostic value of the surface electromyographic assessment of pelvic floor muscles in women with stress urinary incontinence. J Clin Med, 2020; 9, 1947. doi:  10.3390/jcm9061947
[31] Koelbl H, Strassegger H, Riss PA, et al. Morphologic and functional aspects of pelvic floor muscles in patients with pelvic relaxation and genuine stress incontinence. Obstet Gynecol, 1989; 74, 789−95.
[32] Vásconez-González J, Fernandez-Naranjo R, Izquierdo-Condoy JS, et al. Comparative analysis of long-term self-reported COVID-19 symptoms among pregnant women. J Infect Public Health, 2023; 16, 430−40. doi:  10.1016/j.jiph.2023.01.012
[33] Salamanna F, Veronesi F, Martini L, et al. Post-COVID-19 syndrome: the persistent symptoms at the post-viral stage of the disease. A systematic review of the current data. Front Med (Lausanne), 2021; 8, 653516.
[34] dos Santos PK, Sigoli E, Bragança LJG, et al. The musculoskeletal involvement after mild to moderate COVID-19 infection. Front Physiol, 2022; 13, 813924. doi:  10.3389/fphys.2022.813924
[35] Peghin M, Palese A, Venturini M, et al. Post-COVID-19 symptoms 6 months after acute infection among hospitalized and non-hospitalized patients. Clin Microbiol Infect, 2021; 27, 1507−13. doi:  10.1016/j.cmi.2021.05.033
[36] Tuttle CSL, Thang LAN, Maier AB. Markers of inflammation and their association with muscle strength and mass: a systematic review and meta-analysis. Ageing Res Rev, 2020; 64, 101185. doi:  10.1016/j.arr.2020.101185
[37] Hofmann H, Önder A, Becker J, et al. Markers of oxidative stress during post-COVID-19 fatigue: a hypothesis-generating, exploratory pilot study on hospital employees. Front Med, 2023; 10, 1305009. doi:  10.3389/fmed.2023.1305009
[38] Leitner BP, Joseph P, Quast AF, et al. The metabolic and physiologic impairments underlying long COVID associated exercise intolerance. Pulm Circ, 2024; 14, e70009. doi:  10.1002/pul2.70009
[39] Bizjak DA, Ohmayer B, Buhl JL, et al. Functional and morphological differences of muscle mitochondria in chronic fatigue syndrome and post-COVID syndrome. Int J Mol Sci, 2024; 25, 1675. doi:  10.3390/ijms25031675
[40] Scheibenbogen C, Wirth KJ. Key pathophysiological role of skeletal muscle disturbance in post COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): accumulated evidence. J Cachexia Sarcopenia Muscle, 2025; 16, e13669. doi:  10.1002/jcsm.13669
[41] Finsterer J, Mahjoub SZ. Fatigue in healthy and diseased individuals. Am J Hosp Palliat Care, 2014; 31, 562−75. doi:  10.1177/1049909113494748
[42] Appelman B, Charlton BT, Goulding RP, et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat Commun, 2024; 15, 17. doi:  10.1038/s41467-023-44432-3
[43] Shaw JM, Wolpern A, Wu JQ, et al. Postpartum sedentary behaviour and pelvic floor support: a prospective cohort study. J Sports Sci, 2023; 41, 141−50. doi:  10.1080/02640414.2023.2202063
[44] Tryfonos A, Pourhamidi K, Jörnåker G, et al. Functional limitations and exercise intolerance in patients with post-COVID condition: a randomized crossover clinical trial. JAMA Netw Open, 2024; 7, e244386. doi:  10.1001/jamanetworkopen.2024.4386
[45] Peter RS, Nieters A, Göpel S, et al. Persistent symptoms and clinical findings in adults with post-acute sequelae of COVID-19/post-COVID-19 syndrome in the second year after acute infection: a population-based, nested case-control study. PLoS Med, 2025; 22, e1004511. doi:  10.1371/journal.pmed.1004511