[1] Marshall T. When measurements are misleading: modelling the effects of blood pressure misclassification in the English population. BMJ, 2004; 328, 933. doi:  10.1136/bmj.328.7445.933
[2] Ceriello A, Monnier L, Owens D. Glycaemic variability in diabetes: clinical and therapeutic implications. Lancet Diabetes Endocrinol, 2019; 7, 221−30. doi:  10.1016/S2213-8587(18)30136-0
[3] Bangalore S, Breazna A, DeMicco DA, et al. Visit-to-visit low-density lipoprotein cholesterol variability and risk of cardiovascular outcomes: insights from the TNT trial. J Am Coll Cardiol, 2015; 65, 1539−48. doi:  10.1016/j.jacc.2015.02.017
[4] Rothwell PM, Howard SC, Dolan E, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet, 2010; 375, 895−905. doi:  10.1016/S0140-6736(10)60308-X
[5] Hata J, Arima H, Rothwell PM, et al. Effects of visit-to-visit variability in systolic blood pressure on macrovascular and microvascular complications in patients with type 2 diabetes mellitus: the ADVANCE trial. Circulation, 2013; 128, 1325−34. doi:  10.1161/CIRCULATIONAHA.113.002717
[6] Mehlum MH, Liestøl K, Kjeldsen SE, et al. Blood pressure variability and risk of cardiovascular events and death in patients with hypertension and different baseline risks. Eur Heart J, 2018; 39, 2243−51. doi:  10.1093/eurheartj/ehx760
[7] Kim MK, Han K, Kim HS, et al. Cholesterol variability and the risk of mortality, myocardial infarction, and stroke: a nationwide population-based study. Eur Heart J, 2017; 38, 3560−66. doi:  10.1093/eurheartj/ehx585
[8] Boey E, Gay GMW, Poh KK, et al. Visit-to-visit variability in LDL- and HDL-cholesterol is associated with adverse events after ST-segment elevation myocardial infarction: a 5-year follow-up study. Atherosclerosis, 2016; 244, 86−92. doi:  10.1016/j.atherosclerosis.2015.10.110
[9] Bancks MP, Carson AP, Lewis CE, et al. Fasting glucose variability in young adulthood and incident diabetes, cardiovascular disease and all-cause mortality. Diabetologia, 2019; 62, 1366−74. doi:  10.1007/s00125-019-4901-6
[10] Echouffo-Tcheugui JB, Zhao SZ, Brock G, et al. Visit-to-visit glycemic variability and risks of cardiovascular events and all-cause mortality: the ALLHAT study. Diabetes Care, 2019; 42, 486−93. doi:  10.2337/dc18-1430
[11] Lin CC, Yang CP, Li CI, et al. Visit-to-visit variability of fasting plasma glucose as predictor of ischemic stroke: competing risk analysis in a national cohort of Taiwan Diabetes Study. BMC Med, 2014; 12, 165. doi:  10.1186/s12916-014-0165-7
[12] Bae EH, Lim SY, Han KD, et al. Association between systolic and diastolic blood pressure variability and the risk of end-stage renal disease. Hypertension, 2019; 74, 880−7. doi:  10.1161/HYPERTENSIONAHA.119.13422
[13] Kim MK, Han K, Koh ES, et al. Variability in total cholesterol is associated with the risk of end-stage renal disease: a nationwide population-based study. Arterioscl Thromb Vasc Biol, 2017; 37, 1963−70. doi:  10.1161/ATVBAHA.117.309803
[14] Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA, 2007; 298, 2038−47. doi:  10.1001/jama.298.17.2038
[15] Thomas G, Sehgal AR, Kashyap SR, et al. Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol, 2011; 6, 2364−73. doi:  10.2215/CJN.02180311
[16] Nashar K, Egan BM. Relationship between chronic kidney disease and metabolic syndrome: current perspectives. Diabetes, Metab Syndr Obes, 2014; 7, 421−35.
[17] Parati G, Ochoa JE, Lombardi C, et al. Assessment and management of blood-pressure variability. Nat Rev Cardiol, 2013; 10, 143−55. doi:  10.1038/nrcardio.2013.1
[18] Horváth EM, Benkő R, Kiss L, et al. Rapid 'glycaemic swings' induce nitrosative stress, activate poly (ADP-ribose) polymerase and impair endothelial function in a rat model of diabetes mellitus. Diabetologia, 2009; 52, 952−61. doi:  10.1007/s00125-009-1304-0
[19] Quagliaro L, Piconi L, Assaloni R, et al. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes, 2003; 52, 2795−804. doi:  10.2337/diabetes.52.11.2795
[20] Eto M, Toba K, Akishita M, et al. Reduced endothelial vasomotor function and enhanced neointimal formation after vascular injury in a rat model of blood pressure lability. Hypertens Res, 2003; 26, 991−8. doi:  10.1291/hypres.26.991
[21] Kawai T, Ohishi M, Kamide K, et al. The impact of visit-to-visit variability in blood pressure on renal function. Hypertens Res, 2012; 35, 239−43. doi:  10.1038/hr.2011.170
[22] Ning G, Bi YF, Wang TG, et al. Relationship of urinary bisphenol A concentration to risk for prevalent type 2 diabetes in Chinese adults: a cross-sectional analysis. Ann Intern Med, 2011; 155, 368−74. doi:  10.7326/0003-4819-155-6-201109200-00005
[23] Craig CL, Marshall AL, Sjöström M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc, 2003; 35, 1381−95. doi:  10.1249/01.MSS.0000078924.61453.FB
[24] Lloyd-Jones DM, Hong YL, Labarthe D, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association's strategic Impact Goal through 2020 and beyond. Circulation, 2010; 121, 586−613. doi:  10.1161/CIRCULATIONAHA.109.192703
[25] Expert Panel on Detection, Evaluation, Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA, 2001; 285, 2486−97. doi:  10.1001/jama.285.19.2486
[26] Kim MK, Han K, Park YM, et al. Associations of variability in blood pressure, glucose and cholesterol concentrations, and body mass index with mortality and cardiovascular outcomes in the general population. Circulation, 2018; 138, 2627−37. doi:  10.1161/CIRCULATIONAHA.118.034978
[27] Kim MK, Han K, Kim HS, et al. Effects of variability in blood pressure, glucose, and cholesterol concentrations, and body mass index on end-stage renal disease in the general population of Korea. J Clin Med, 2019; 8, 755. doi:  10.3390/jcm8050755
[28] Kidney Disease Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl, 2013; 3, 1−150. doi:  10.1038/kisup.2012.73
[29] Plantinga LC, Crews DC, Coresh J, et al. Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am Soc Nephrol, 2010; 5, 673−82. doi:  10.2215/CJN.07891109
[30] Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med, 2009; 150, 604−12. doi:  10.7326/0003-4819-150-9-200905050-00006
[31] Ceriello A, Esposito K, Piconi L, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes, 2008; 57, 1349−54. doi:  10.2337/db08-0063
[32] Mendez CE, Mok KT, Ata A, et al. Increased glycemic variability is independently associated with length of stay and mortality in noncritically ill hospitalized patients. Diabetes Care, 2013; 36, 4091−7. doi:  10.2337/dc12-2430
[33] Johnson-Rabbett B, Seaquist ER. Hypoglycemia in diabetes: the dark side of diabetes treatment. A patient-centered review. J Diabetes, 2019; 11, 711−8. doi:  10.1111/1753-0407.12933
[34] Cardoso CRL, Leite NC, Moram CBM, et al. Long-term visit-to-visit glycemic variability as predictor of micro- and macrovascular complications in patients with type 2 diabetes: the Rio de Janeiro Type 2 Diabetes Cohort Study. Cardiovasc Diabetol, 2018; 17, 33. doi:  10.1186/s12933-018-0677-0
[35] Li SY, Nemeth I, Donnelly L, et al. Visit-to-Visit HbA1c variability is associated with cardiovascular disease and microvascular complications in patients with newly diagnosed type 2 diabetes. Diabetes Care, 2020; 43, 426−32. doi:  10.2337/dc19-0823
[36] Takao T, Suka M, Yanagisawa H, et al. Predictive ability of visit-to-visit variability in HbA1c and systolic blood pressure for the development of microalbuminuria and retinopathy in people with type 2 diabetes. Diabetes Res Clin Pract, 2017; 128, 15−23. doi:  10.1016/j.diabres.2017.03.027
[37] Ceriello A, De Cosmo S, Rossi MC, et al. Variability in HbA1c, blood pressure, lipid parameters and serum uric acid, and risk of development of chronic kidney disease in type 2 diabetes. Diabetes Obes Metab, 2017; 19, 1570−8. doi:  10.1111/dom.12976
[38] Yano Y, Fujimoto S, Kramer H, et al. Long-term blood pressure variability, new-onset diabetes mellitus, and new-onset chronic kidney disease in the Japanese general population. Hypertension, 2015; 66, 30−6. doi:  10.1161/HYPERTENSIONAHA.115.05472
[39] Whittle J, Lynch AI, Tanner RM, et al. Visit-to-visit variability of BP and CKD outcomes: results from the ALLHAT. Clin J Am Soc Nephrol, 2016; 11, 471−80. doi:  10.2215/CJN.04660415
[40] Chia YC, Lim HM, Ching SM. Long-term visit-to-visit blood pressure variability and renal function decline in patients with hypertension over 15 years. J Am Heart Assoc, 2016; 5, e003825.
[41] Epstein M, Vaziri ND. Statins in the management of dyslipidemia associated with chronic kidney disease. Nat Rev Nephrol, 2012; 8, 214−23.
[42] Diamond JR, Karnovsky MJ. Focal and segmental glomerulosclerosis: analogies to atherosclerosis. Kidney Int, 1988; 33, 917−24. doi:  10.1038/ki.1988.87
[43] Muntner P, Coresh J, Smith JC, et al. Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study. Kidney Int, 2000; 58, 293−301. doi:  10.1046/j.1523-1755.2000.00165.x
[44] Yan YQ, Huang YQ, Zhou D, et al. Visit-to-visit variability in total cholesterol correlates with the progression of renal function decline in a Chinese community-based hypertensive population. Kidney Blood Press Res, 2019; 44, 727−42. doi:  10.1159/000501367