[1] |
Woolf SH, Masters RK, Aron LY. Effect of the covid-19 pandemic in 2020 on life expectancy across populations in the USA and other high income countries: simulations of provisional mortality data. BMJ, 2021; 373, n1343. |
[2] |
Trias-Llimós S, Riffe T, Bilal U. Monitoring life expectancy levels during the COVID-19 PANDEMIC: example of the unequal impact of the first wave on Spanish regions. PLoS One, 2020; 15, e0241952. doi: 10.1371/journal.pone.0241952 |
[3] |
Sun QF, Lyu J, Li LM. Development and application of health indicators of life expectancy. Chin J Epidemiol, 2021; 42, 1677−82. (In Chinese) |
[4] |
Lhachimi SK, Nusselder WJ, Smit HA, et al. Potential health gains and health losses in eleven EU countries attainable through feasible prevalences of the life-style related risk factors alcohol, BMI, and smoking: a quantitative health impact assessment. BMC Public Health, 2016; 16, 734. doi: 10.1186/s12889-016-3299-z |
[5] |
Deelen J, Evans DS, Arking DE, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat Commun, 2019; 10, 3669. doi: 10.1038/s41467-019-11558-2 |
[6] |
Joshi PK, Pirastu N, Kentistou KA, et al. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity. Nat Commun, 2017; 8, 910. doi: 10.1038/s41467-017-00934-5 |
[7] |
Joshi PK, Fischer K, Schraut KE, et al. Variants near CHRNA3/5 and APOE have age- and sex-related effects on human lifespan. Nat Commun, 2016; 7, 11174. doi: 10.1038/ncomms11174 |
[8] |
Sun QF, Yu DM, Fan JN, et al. Healthy lifestyle and life expectancy at age 30 years in the Chinese population: an observational study. Lancet Public Health, 2022; 7, e994−1004. doi: 10.1016/S2468-2667(22)00110-4 |
[9] |
Aragón TJ, Lichtensztajn DY, Katcher BS, et al. Calculating expected years of life lost for assessing local ethnic disparities in causes of premature death. BMC Public Health, 2008; 8, 116. doi: 10.1186/1471-2458-8-116 |
[10] |
Muchira JM, Gona PN, Mogos MF, et al. Association of parental cardiovascular health with disability-adjusted life years in the offspring: results from the framingham heart study. Circ Cardiovasc Qual Outcomes, 2023; 16, e008809. |
[11] |
López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: an expanding universe. Cell, 2023; 186, 243−78. doi: 10.1016/j.cell.2022.11.001 |
[12] |
Codd V, Wang QN, Allara E, et al. Polygenic basis and biomedical consequences of telomere length variation. Nat Genet, 2021; 53, 1425−33. doi: 10.1038/s41588-021-00944-6 |
[13] |
Bayne S, Li H, Jones MEE, et al. Estrogen deficiency reversibly induces telomere shortening in mouse granulosa cells and ovarian aging in vivo. Protein Cell, 2011; 2, 333−46. doi: 10.1007/s13238-011-1033-2 |
[14] |
Barrett ELB, Richardson DS. Sex differences in telomeres and lifespan. Aging Cell, 2011; 10, 913−21. doi: 10.1111/j.1474-9726.2011.00741.x |
[15] |
Codd V, Denniff M, Swinfield C, et al. Measurement and initial characterization of leukocyte telomere length in 474, 074 participants in UK Biobank. Nat Aging, 2022; 2, 170−9. doi: 10.1038/s43587-021-00166-9 |
[16] |
The Telomeres Mendelian Randomization Collaboration. Association between telomere length and risk of cancer and non-neoplastic diseases: a Mendelian randomization study. JAMA Oncol, 2017; 3, 636−51. doi: 10.1001/jamaoncol.2016.5945 |
[17] |
Schneider CV, Schneider KM, Teumer A, et al. Association of telomere length with risk of disease and mortality. JAMA Intern Med, 2022; 182, 291−300. doi: 10.1001/jamainternmed.2021.7804 |
[18] |
Wang SL, Chen YB, Qu FL, et al. Association between leukocyte telomere length and glioma risk: a case-control study. Neuro Oncol, 2014; 16, 505−12. doi: 10.1093/neuonc/not240 |
[19] |
Luu HN, Huang JY, Wang RW, et al. Association between leukocyte telomere length and the risk of pancreatic cancer: findings from a prospective study. PLoS One, 2019; 14, e0221697. doi: 10.1371/journal.pone.0221697 |
[20] |
Willeit P, Willeit J, Mayr A, et al. Telomere length and risk of incident cancer and cancer mortality. JAMA, 2010; 304, 69−75. doi: 10.1001/jama.2010.897 |
[21] |
Panayiotou AG, Nicolaides AN, Griffin M, et al. Leukocyte telomere length is associated with measures of subclinical atherosclerosis. Atherosclerosis, 2010; 211, 176−81. doi: 10.1016/j.atherosclerosis.2010.01.037 |
[22] |
Rodríguez-Fernández B, Sánchez-Benavides G, Genius P, et al. Association between telomere length and cognitive function among cognitively unimpaired individuals at risk of Alzheimer’s disease. Neurobiol Aging, 2024; 141, 140−50. doi: 10.1016/j.neurobiolaging.2024.05.015 |
[23] |
Diukov Y, Bachinskaya N, Dzobak A, et al. Association of telomere length with cognitive impairment. J Mol Neurosci, 2023; 73, 448−55. doi: 10.1007/s12031-023-02130-1 |
[24] |
Deboy EA, Tassia MG, Schratz KE, et al. Familial clonal hematopoiesis in a long telomere syndrome. N Engl J Med, 2023; 388, 2422−33. doi: 10.1056/NEJMoa2300503 |
[25] |
Austad SN, Fischer KE. Sex differences in lifespan. Cell Metab, 2016; 23, 1022−33. doi: 10.1016/j.cmet.2016.05.019 |
[26] |
Bakaysa SL, Mucci LA, Slagboom PE, et al. Telomere length predicts survival independent of genetic influences. Aging Cell, 2007; 6, 769−74. doi: 10.1111/j.1474-9726.2007.00340.x |
[27] |
Deelen J, Beekman M, Codd V, et al. Leukocyte telomere length associates with prospective mortality independent of immune-related parameters and known genetic markers. Int J Epidemiol, 2014; 43, 878−86. doi: 10.1093/ije/dyt267 |
[28] |
Steenstrup T, Kark JD, Verhulst S, et al. Telomeres and the natural lifespan limit in humans. Aging, 2017; 9, 1130−42. doi: 10.18632/aging.101216 |
[29] |
Demanelis K, Jasmine F, Chen LS, et al. Determinants of telomere length across human tissues. Science, 2020; 369, eaaz6876. doi: 10.1126/science.aaz6876 |
[30] |
Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res, 2009; 37, e21. doi: 10.1093/nar/gkn1027 |
[31] |
Struijk EA, May AM, Beulens JWJ, et al. Development of methodology for disability-adjusted life years (DALYs) calculation based on real-life data. PLoS One, 2013; 8, e74294. doi: 10.1371/journal.pone.0074294 |
[32] |
Yeap BB, Marriott RJ, Antonio L, et al. Serum testosterone is inversely and sex hormone-binding globulin is directly associated with all-cause mortality in men. J Clin Endocrinol Metab, 2021; 106, e625−37. doi: 10.1210/clinem/dgaa743 |
[33] |
Pye SR, Huhtaniemi IT, Finn JD, et al. Late-onset hypogonadism and mortality in aging men. J Clin Endocrinol Metab, 2014; 99, 1357−66. doi: 10.1210/jc.2013-2052 |
[34] |
Wang JY, Fan XK, Yang MJ, et al. Sex-specific associations of circulating testosterone levels with all-cause and cause-specific mortality. Eur J Endocrinol, 2021; 184, 723−32. doi: 10.1530/EJE-20-1253 |
[35] |
Nounu A, Kar SP, Relton CL, et al. Sex steroid hormones and risk of breast cancer: a two-sample Mendelian randomization study. Breast Cancer Res, 2022; 24, 66. doi: 10.1186/s13058-022-01553-9 |
[36] |
Endogenous Hormones and Breast Cancer Collaborative Group. Sex hormones and risk of breast cancer in premenopausal women: a collaborative reanalysis of individual participant data from seven prospective studies. Lancet Oncol, 2013; 14, 1009−19. doi: 10.1016/S1470-2045(13)70301-2 |
[37] |
Allen NE, Key TJ, Dossus L, et al. Endogenous sex hormones and endometrial cancer risk in women in the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer, 2008; 15, 485−97. doi: 10.1677/ERC-07-0064 |
[38] |
Davis SR. Cardiovascular and cancer safety of testosterone in women. Curr Opin Endocrinol Diabetes Obes, 2011; 18, 198−203. doi: 10.1097/MED.0b013e328344f449 |
[39] |
Sievers C, Klotsche J, Pieper L, et al. Low testosterone levels predict all-cause mortality and cardiovascular events in women: a prospective cohort study in German primary care patients. Eur J Endocrinol, 2010; 163, 699−708. doi: 10.1530/EJE-10-0307 |
[40] |
Zhu Q, Chen SM, Li HW, et al. Association analysis between sex hormone levels and all-cause mortality in Hainan female centenarians. Chin J Epidemiol, 2023; 44, 1245−50. (In Chinese) |
[41] |
Gubbels Bupp MR. Sex, the aging immune system, and chronic disease. Cell Immunol, 2015; 294, 102−10. doi: 10.1016/j.cellimm.2015.02.002 |
[42] |
Oertelt-Prigione S. The influence of sex and gender on the immune response. Autoimmun Rev, 2012; 11, A479−85. doi: 10.1016/j.autrev.2011.11.022 |
[43] |
Viña J, Sastre J, Pallardó F, et al. Mitochondrial theory of aging: importance to explain why females live longer than males. Antioxid Redox Signal, 2003; 5, 549−56. doi: 10.1089/152308603770310194 |
[44] |
Viña J, Borrás C, Gambini J, et al. Why females live longer than males? Importance of the upregulation of longevity-associated genes by oestrogenic compounds. FEBS Lett, 2005; 579, 2541−5. doi: 10.1016/j.febslet.2005.03.090 |
[45] |
Rodríguez-Fernández B, Gispert JD, Guigo R, et al. Genetically predicted telomere length and its relationship with neurodegenerative diseases and life expectancy. Comput Struct Biotechnol J, 2022; 20, 4251−6. doi: 10.1016/j.csbj.2022.08.006 |
[46] |
Arriaga EE. Measuring and explaining the change in life expectancies. Demography, 1984; 21, 83−96. doi: 10.2307/2061029 |
[47] |
Haycock PC, Heydon EE, Kaptoge S, et al. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ, 2014; 349, g4227. doi: 10.1136/bmj.g4227 |
[48] |
Cheng FF, Carroll L, Joglekar MV, et al. Diabetes, metabolic disease, and telomere length. Lancet Diabetes Endocrinol, 2021; 9, 117−26. doi: 10.1016/S2213-8587(20)30365-X |
[49] |
Liu R, Xiang MR, Pilling LC, et al. Mid-life leukocyte telomere length and dementia risk: an observational and mendelian randomization study of 435, 046 UK Biobank participants. Aging Cell, 2023; 22, e13808. doi: 10.1111/acel.13808 |