[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021; 71, 209−49. doi:  10.3322/caac.21660
[2] Singh D, Vignat J, Lorenzoni V, et al. Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO global cervical cancer elimination initiative. Lancet Glob Health, 2023; 11, e197−206. doi:  10.1016/S2214-109X(22)00501-0
[3] Xia CF, Dong XS, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl), 2022; 135, 584−90. doi:  10.1097/CM9.0000000000002108
[4] Cohen PA, Jhingran A, Oaknin A, et al. Cervical cancer. Lancet, 2019; 393, 169−82. doi:  10.1016/S0140-6736(18)32470-X
[5] Wu X, Peng L, Zhang YO, et al. Identification of key genes and pathways in cervical cancer by bioinformatics analysis. Int J Med Sci, 2019; 16, 800−12. doi:  10.7150/ijms.34172
[6] The Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical cancer. Nature, 2017; 543, 378−84. doi:  10.1038/nature21386
[7] Lei JY, Ploner A, Elfström KM, et al. HPV vaccination and the risk of invasive cervical cancer. N Engl J Med, 2020; 383, 1340−8. doi:  10.1056/NEJMoa1917338
[8] Jin X, Liu ZR, Yang DX, et al. Recent progress and future perspectives of immunotherapy in advanced gastric cancer. Front Immunol, 2022; 13, 948647. doi:  10.3389/fimmu.2022.948647
[9] Fournel L, Wu ZR, Stadler N, et al. Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer. Cancer Lett, 2019; 464, 5−14. doi:  10.1016/j.canlet.2019.08.005
[10] Solis RN, Silverman DA, Birkeland AC. Current trends in precision medicine and next-generation sequencing in head and neck cancer. Curr Treat Options Oncol, 2022; 23, 254−67. doi:  10.1007/s11864-022-00942-8
[11] Monk BJ, Enomoto T, Kast WM, et al. Integration of immunotherapy into treatment of cervical cancer: recent data and ongoing trials. Cancer Treat Rev, 2022; 106, 102385. doi:  10.1016/j.ctrv.2022.102385
[12] Wang RJ, Pan W, Jin L, et al. Human papillomavirus vaccine against cervical cancer: opportunity and challenge. Cancer Lett, 2020; 471, 88−102. doi:  10.1016/j.canlet.2019.11.039
[13] Ferrall L, Lin KY, Roden RBS, et al. Cervical cancer immunotherapy: facts and hopes. Clin Cancer Res, 2021; 27, 4953−73. doi:  10.1158/1078-0432.CCR-20-2833
[14] Peng M, Mo YZ, Wang YA, et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer, 2019; 18, 128. doi:  10.1186/s12943-019-1055-6
[15] Lang F, Schrörs B, Löwer M, et al. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov, 2022; 21, 261−82. doi:  10.1038/s41573-021-00387-y
[16] Huang J, Qian ZY, Gong YH, et al. Comprehensive genomic variation profiling of cervical intraepithelial neoplasia and cervical cancer identifies potential targets for cervical cancer early warning. J Med Genet, 2019; 56, 186−94. doi:  10.1136/jmedgenet-2018-105745
[17] Li H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: 1303.3997v2 [q-bio. GN].
[18] McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010; 20, 1297−303. doi:  10.1101/gr.107524.110
[19] McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010; 20(9), 1297-1303.
[20] Talevich E, Shain AH, Botton T, et al. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol, 2016; 12, e1004873. doi:  10.1371/journal.pcbi.1004873
[21] Robinson JT, Thorvaldsdóttir H, Wenger AM, et al. Variant review with the integrative genomics viewer. Cancer Res, 2017; 77, e31−4. doi:  10.1158/0008-5472.CAN-17-0337
[22] Mermel CH, Schumacher SE, Hill B, et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol, 2011; 12, R41. doi:  10.1186/gb-2011-12-4-r41
[23] Mayakonda A, Lin DC, Assenov Y, et al. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res, 2018; 28, 1747−56. doi:  10.1101/gr.239244.118
[24] Rosenthal R, McGranahan N, Herrero J, et al. deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol, 2016; 17, 31. doi:  10.1186/s13059-016-0893-4
[25] Arnedo-Pac C, Mularoni L, Muiños F, et al. OncodriveCLUSTL: a sequence-based clustering method to identify cancer drivers. Bioinformatics, 2019; 35, 4788−90. doi:  10.1093/bioinformatics/btz501
[26] Mularoni L, Sabarinathan R, Deu-Pons J, et al. OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations. Genome Biol, 2016; 17, 128. doi:  10.1186/s13059-016-0994-0
[27] Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013; 499, 214−8. doi:  10.1038/nature12213
[28] Ka S, Lee S, Hong J, et al. HLAscan: genotyping of the HLA region using next-generation sequencing data. BMC Bioinformatics, 2017; 18, 258. doi:  10.1186/s12859-017-1671-3
[29] Schenck RO, Lakatos E, Gatenbee C, et al. NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline. BMC Bioinformatics, 2019; 20, 264. doi:  10.1186/s12859-019-2876-4
[30] Reynisson B, Alvarez B, Paul S, et al. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res, 2020; 48, W449−54. doi:  10.1093/nar/gkaa379
[31] Ojesina AI, Lichtenstein L, Freeman SS, et al. Landscape of genomic alterations in cervical carcinomas. Nature, 2014; 506, 371−5. doi:  10.1038/nature12881
[32] Niyazi M, Han LL, Husaiyin S, et al. Analysis of somatic mutations and key driving factors of cervical cancer progression. Open Med (Wars), 2023; 18, 20230759. doi:  10.1515/med-2023-0759
[33] Xu YX, Luo H, Hu QC, et al. Identification of potential driver genes based on multi-genomic data in cervical cancer. Front Genet, 2021; 12, 598304. doi:  10.3389/fgene.2021.598304
[34] Chung TKH, Van Hummelen P, Chan PKS, et al. Genomic aberrations in cervical adenocarcinomas in Hong Kong Chinese women. Int J Cancer, 2015; 137, 776−83. doi:  10.1002/ijc.29456
[35] Bao CH, An N, Xie H, et al. Identifying potential neoantigens for cervical cancer immunotherapy using comprehensive genomic variation profiling of cervical intraepithelial neoplasia and cervical cancer. Front Oncol, 2021; 11, 672386. doi:  10.3389/fonc.2021.672386
[36] Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature, 2013; 500, 415−21. doi:  10.1038/nature12477
[37] Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res, 2019; 47, D941−7. doi:  10.1093/nar/gky1015
[38] Chen YP, Zhang Y, Lv JW, et al. Genomic analysis of tumor microenvironment immune types across 14 solid cancer types: immunotherapeutic implications. Theranostics, 2017; 7, 3585−94. doi:  10.7150/thno.21471
[39] Shen H, Guo M, Wang L, et al. MUC16 facilitates cervical cancer progression via JAK2/STAT3 phosphorylation-mediated cyclooxygenase-2 expression. Genes Genomics, 2020; 42, 127−33. doi:  10.1007/s13258-019-00885-9
[40] Bhattacharya S, Dunn P, Thomas CG, et al. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data, 2018; 5, 180015. doi:  10.1038/sdata.2018.15
[41] Lin M, Zhang XL, You R, et al. Neoantigen landscape in metastatic nasopharyngeal carcinoma. Theranostics, 2021; 11, 6427−44. doi:  10.7150/thno.53229
[42] Wu JC, Zhao WY, Zhou BB, et al. TSNAdb: a database for tumor-specific neoantigens from immunogenomics data analysis. Genomics Proteomics Bioinformatics, 2018; 16, 276−82. doi:  10.1016/j.gpb.2018.06.003
[43] Almeida LG, Sakabe NJ, deOliveira AR, et al. CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens. Nucleic Acids Res, 2009; 37, D816−9. doi:  10.1093/nar/gkn673
[44] Zhou Y, Zhang YT, Lian XC, et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res, 2022; 50, D1398−407. doi:  10.1093/nar/gkab953
[45] Southan C, Sharman JL, Benson HE, et al. The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res, 2016; 44, D1054−68. doi:  10.1093/nar/gkv1037
[46] Mullard A. 2017 FDA drug approvals. Nat Rev Drug Discov, 2018; 17, 81−5. doi:  10.1038/nrd.2018.4
[47] Wang YZ, Wu WB, Zhu M, et al. Integrating expression-related SNPs into genome-wide gene- and pathway-based analyses identified novel lung cancer susceptibility genes. Int J Cancer, 2018; 142, 1602−10. doi:  10.1002/ijc.31182
[48] Chen ZM, Yao NH, Zhang S, et al. Identification of critical radioresistance genes in esophageal squamous cell carcinoma by whole-exome sequencing. Ann Transl Med, 2020; 8, 998. doi:  10.21037/atm-20-5196
[49] Cui XY, Pei XS, Wang H, et al. ALG3 promotes peritoneal metastasis of ovarian cancer through increasing interaction of α1, 3-mannosylated uPAR and ADAM8. Cells, 2022; 11, 3141. doi:  10.3390/cells11193141
[50] Sun XQ, He ZY, Guo L, et al. ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-β receptor II in breast cancer. J Exp Clin Cancer Res, 2021; 40, 149. doi:  10.1186/s13046-021-01932-8
[51] Ke SB, Qiu H, Chen JM, et al. ALG3 contributes to the malignancy of non-small cell lung cancer and is negatively regulated by MiR-98-5p. Pathol Res Pract, 2020; 216, 152761. doi:  10.1016/j.prp.2019.152761
[52] Chen JR, Huang MS, Lee YC, et al. Potential clinical value of 5-hydroxytryptamine receptor 3C as a prognostic biomarker for lung cancer. J Oncol, 2021; 2021, 1901191.
[53] Zhou HY, Zhang CF, Li HR, et al. A novel risk score system of immune genes associated with prognosis in endometrial cancer. Cancer Cell Int, 2020; 20, 240. doi:  10.1186/s12935-020-01317-5
[54] Ma MW, Li J, Zhang ZM, et al. The role and mechanism of microRNA-1224 in human cancer. Front Oncol, 2022; 12, 858892. doi:  10.3389/fonc.2022.858892
[55] Lacombe L, Hovington H, Brisson H, et al. UGT2B28 accelerates prostate cancer progression through stabilization of the endocytic adaptor protein HIP1 regulating AR and EGFR pathways. Cancer Lett, 2023; 553, 215994. doi:  10.1016/j.canlet.2022.215994
[56] Henderson S, Chakravarthy A, Su XP, et al. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. Cell Rep, 2014; 7, 1833−41. doi:  10.1016/j.celrep.2014.05.012
[57] Roberts SA, Lawrence MS, Klimczak LJ, et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet, 2013; 45, 970−6. doi:  10.1038/ng.2702
[58] Tanaka M, Koyama T, Sakurai T, et al. The endothelial adrenomedullin-RAMP2 system regulates vascular integrity and suppresses tumour metastasis. Cardiovasc Res, 2016; 111, 398−409. doi:  10.1093/cvr/cvw166
[59] de Paula Souza DPS, Dos Reis Pereira Queiroz L, de Souza MG, et al. Identification of potential biomarkers and survival analysis for oral squamous cell carcinoma: a transcriptomic study. Oral Dis, 2023; 29, 2658−66. doi:  10.1111/odi.14302
[60] Li J, Zhou L, Jiang HY, et al. Inhibition of FOSL2 aggravates the apoptosis of ovarian cancer cells by promoting the formation of inflammasomes. Genes Genomics, 2022; 44, 29−38. doi:  10.1007/s13258-021-01152-6
[61] Xu P, Wang L, Xie X, et al. Hsa_circ_0001869 promotes NSCLC progression via sponging miR-638 and enhancing FOSL2 expression. Aging (Albany NY), 2020; 12, 23836−48.
[62] Wan XY, Guan SD, Hou YX, et al. FOSL2 promotes VEGF-independent angiogenesis by transcriptionnally activating Wnt5a in breast cancer-associated fibroblasts. Theranostics, 2021; 11, 4975−91. doi:  10.7150/thno.55074
[63] Neefjes J, Jongsma MLM, Paul P, et al. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol, 2011; 11, 823−36. doi:  10.1038/nri3084
[64] Kaur S, Rajoria P, Chopra M. HDAC6: a unique HDAC family member as a cancer target. Cell Oncol (Dordr), 2022; 45, 779−829.
[65] Liu G, Zhao H, Song Q, et al. Long non-coding RNA DPP10-AS1 exerts anti-tumor effects on colon cancer via the upregulation of ADCY1 by regulating microRNA-127-3p. Aging (Albany NY), 2021; 13, 9748−65.
[66] El-Zein M, Cheishvili D, Gotlieb W, et al. Genome-wide DNA methylation profiling identifies two novel genes in cervical neoplasia. Int J Cancer, 2020; 147, 1264−74.