[1] Antinori A, Mazzotta V, Vita S, et al. Epidemiological, clinical and virological characteristics of four cases of monkeypox support transmission through sexual contact, Italy, May 2022. Euro Surveill, 2022; 27, 2200421.
[2] Brown K, Leggat PA. Human monkeypox: current state of knowledge and implications for the future. Trop Med Infect Dis, 2016; 1, 8. doi:  10.3390/tropicalmed1010008
[3] Luo MH, Zhao L, Wu CC, et al. Establishment of CRISPR/Cas12a-based molecular detection method for monkeypox virus. Chin J Exp Clin Virol, 2023; 37, 193−200. (In Chinese)
[4] McCollum AM, Damon IK. Human monkeypox. Clin Infect Dis, 2014; 58, 260−7. doi:  10.1093/cid/cit703
[5] Isidro J, Borges V, Pinto M, et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med, 2022; 28, 1569−72. doi:  10.1038/s41591-022-01907-y
[6] Poland GA, Kennedy RB, Tosh PK. Prevention of monkeypox with vaccines: a rapid review. Lancet Infect Dis, 2022; 22, e349−58. doi:  10.1016/S1473-3099(22)00574-6
[7] Tan WJ, Gao GF. Neglected zoonotic monkeypox in Africa but now back in the spotlight worldwide. China CDC Wkly, 2022; 4, 847−8.
[8] Zhao H, Wang WL, Zhao L, et al. The first imported case of monkeypox in the mainland of China — Chongqing Municipality, China, September 16, 2022. China CDC Wkly, 2022; 4, 853−4.
[9] China CDC. Mpox. https://www.chinacdc.cn/jkzt/crb/zl/szkb_13037/. [2022-11-28]. (In Chinese)
[10] Desai AN, Malani PN. JYNNEOS vaccine for Mpox. JAMA, 2023; 329, 1995. doi:  10.1001/jama.2023.9873
[11] Persad G, Leland RJ, Ottersen T, et al. Fair domestic allocation of monkeypox virus countermeasures. Lancet Public Health, 2023; 8, e378−82. doi:  10.1016/S2468-2667(23)00061-0
[12] World Health Organization. Mpox (monkeypox): is there a vaccine against mpox? https://www.who.int/zh/news-room/questions-and-answers/item/monkeypox. [2023-12-11].
[13] Huang Y, Mu L, Wang W. Monkeypox: epidemiology, pathogenesis, treatment and prevention. Sig Transduct Target Ther, 2022; 7, 373. doi:  10.1038/s41392-022-01215-4
[14] Meisinger-Henschel C, Schmidt M, Lukassen S, et al. Genomic sequence of chorioallantois vaccinia virus Ankara, the ancestor of modified vaccinia virus Ankara. J Gen Virol, 2007; 88, 3249−59. doi:  10.1099/vir.0.83156-0
[15] Katamesh BE, Madany M, Labieb F, et al. Monkeypox pandemic containment: Does the ACAM2000 vaccine play a role in the current outbreaks? Expert Rev Vaccines, 2023; 22, 366-68.
[16] Pittman PR, Hahn M, Lee HS, et al. Phase 3 efficacy trial of modified vaccinia Ankara as a vaccine against smallpox. N Engl J Med, 2019; 381, 1897−908. doi:  10.1056/NEJMoa1817307
[17] Nave L, Margalit I, Tau N, et al. Immunogenicity and safety of Modified Vaccinia Ankara (MVA) vaccine-a systematic review and meta-analysis of randomized controlled trials. Vaccines (Basel), 2023; 11, 1410. doi:  10.3390/vaccines11091410
[18] Saadh MJ, Ghadimkhani T, Soltani N, et al. Progress and prospects on vaccine development against monkeypox infection. Microb Pathog, 2023; 180, 106156. doi:  10.1016/j.micpath.2023.106156
[19] Ladhani SN, Dowell AC, Jones S, et al. Early evaluation of the safety, reactogenicity, and immune response after a single dose of modified vaccinia Ankara-Bavaria Nordic vaccine against mpox in children: a national outbreak response. Lancet Infect Dis, 2023; 23, 1042−50. doi:  10.1016/S1473-3099(23)00270-0
[20] Fontán-Vela M, Hernando V, Olmedo C, et al. Effectiveness of modified vaccinia Ankara-Bavaria Nordic vaccination in a population at high risk of mpox: a Spanish cohort study. Clin Infect Dis, 2024; 78, 476−83. doi:  10.1093/cid/ciad645
[21] Wolff Sagy Y, Zucker R, Hammerman A, et al. Real-world effectiveness of a single dose of mpox vaccine in males. Nat Med, 2023; 29, 748−52. doi:  10.1038/s41591-023-02229-3
[22] Zaeck LM, Lamers MM, Verstrepen BE, et al. Low levels of monkeypox virus-neutralizing antibodies after MVA-BN vaccination in healthy individuals. Nat Med, 2023; 29, 270−8. doi:  10.1038/s41591-022-02090-w
[23] Bottanelli M, Messina E, Raccagni AR, et al. A case of breakthrough mpox infection in an individual non-responder to MVA-BN vaccination. Lancet Infect Dis, 2024; 24, e11−2. doi:  10.1016/S1473-3099(23)00741-7
[24] Johnson BF, Kanatani Y, Fujii T, et al. Serological responses in humans to the smallpox vaccine LC16m8. J Gen Virol, 2011; 92, 2405−10. doi:  10.1099/vir.0.034207-0
[25] Eto A, Fujita M, Nishiyama Y, et al. Profiling of the antibody response to attenuated LC16m8 smallpox vaccine using protein array analysis. Vaccine, 2019; 37, 6588−93. doi:  10.1016/j.vaccine.2019.09.006
[26] Eto A, Saito T, Yokote H, et al. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8. Vaccine, 2015; 33, 6106−11. doi:  10.1016/j.vaccine.2015.07.111
[27] Saito T, Fujii T, Kanatani Y, et al. Clinical and immunological response to attenuated tissue-cultured smallpox vaccine LC16m8. JAMA, 2009; 301, 1025−33. doi:  10.1001/jama.2009.289
[28] Morino E, Mine S, Tomita N, et al. Mpox neutralizing antibody response to LC16m8 vaccine in healthy adults. NEJM Evid, 2024; 3, EVIDoa2300290.
[29] Maksyutov RA, Yakubitskyi SN, Kolosova IV, et al. Comparing new-generation candidate vaccines against human orthopoxvirus infections. Acta Nat, 2017; 9, 88−93.
[30] Li ET, Guo XP, Hong DX, et al. Duration of humoral immunity from smallpox vaccination and its cross-reaction with Mpox virus. Sig Transduct Target Ther, 2023; 8, 350. doi:  10.1038/s41392-023-01574-6
[31] Yang L, Chen YS, Li S, et al. Immunization of mice with vaccinia virus Tiantan strain yields antibodies cross-reactive with protective antigens of monkeypox virus. Virol Sin, 2023; 38, 162−4. doi:  10.1016/j.virs.2022.10.004
[32] Zhen ZD, Zhang LL, Li Q, et al. Cross-reactive antibodies against monkeypox virus exist in the population immunized with vaccinia Tian Tan strain in China. Infect Genet Evol, 2023; 113, 105477. doi:  10.1016/j.meegid.2023.105477
[33] Zhao Y, Huang PP, Zhao L, et al. Cytobiological characteristics and investigation of replication-defective mechanism of non-replicating Tiantan Vaccinia virus. Chin J Virol, 2019; 35, 58−63. (In Chinese)
[34] Zhao Y, Zhao L, Huang PP, et al. Non-replicating vaccinia virus TianTan Strain (NTV) translation arrest of viral late protein synthesis associated with anti-viral host factor SAMD9. Front Cell Infect Microbiol, 2020; 10, 116. doi:  10.3389/fcimb.2020.00116
[35] Huang PP, Zhao L, Ren J, et al. Preliminary exploration of replication-defective mechanism of highly attenuated NTV strain of vaccinia virus Tiantan. Chin J Exp Clin Virol, 2018; 32, 119−23. (In Chinese)
[36] Zhang P, Zhao Y, Zhao L, et al. Construction and virulence evaluation of nonreplicative vaccinia virus modified strain NTV-C7L. Chin J Exp Clin Virol, 2020; 34, 72−7. (In Chinese)
[37] Yuan H, Wu YB, Ren J, et al. Non-replicating vaccinia virus Tiantan strain NTV induces early apoptosis. Chin J Exp Clin Virol, 2022; 36, 136−40. (In Chinese)
[38] Wu YB, Zhao L, Ren J, et al. CRISPR-Cas9 system for construction of highly efficient recombinant vaccinia virus. Chin J Exp Clin Virol, 2021; 35, 199−204. (In Chinese)
[39] Ruan L. Research and application of vaccinia virus Tiantan strain vector. J Microbes Infect, 2013; 8, 2−8. (In Chinese)
[40] Chu QH, Huang BY, Li MZ, et al. Non-replicating vaccinia virus NTV as an effective next-generation smallpox and monkeypox vaccine: evidence from mouse and rhesus monkey models. Emerg Microbes Infect, 2023; 12, 2278900. doi:  10.1080/22221751.2023.2278900
[41] Zhu WJ, Fang Q, Zhuang K, et al. The attenuation of vaccinia Tian Tan strain by the removal of the viral M1L-K2L genes. J Virol Methods, 2007; 144, 17−26. doi:  10.1016/j.jviromet.2007.03.012
[42] Liu Z, Liu Y, Wang SH, et al. Construction of expression vector of recombinant vaccinia virus TianTan strain with C8L-K3L region deletion and study on biological properties of the recombinant virus. Chin J Microbiol Immunol, 2013; 33, 434−9. (In Chinese)
[43] Kan SF, Wang YH, Sun LL, et al. Attenuation of vaccinia Tian Tan strain by removal of viral TC7L-TK2L and TA35R genes. PLoS One, 2012; 7, e31979. doi:  10.1371/journal.pone.0031979
[44] Lim H, In HJ, Kim YJ, et al. Development of an attenuated smallpox vaccine candidate: the KVAC103 strain. Vaccine, 2021; 39, 5214−23. doi:  10.1016/j.vaccine.2021.06.060
[45] Hwang YH, Byeon Y, Ahn SH, et al. Live attenuated smallpox vaccine candidate (KVAC103) efficiently induces protective immune responses in mice. Vaccine, 2024; 42, 1283−91. doi:  10.1016/j.vaccine.2024.01.064
[46] Tartaglia J, Perkus ME, Taylor J, et al. NYVAC: a highly attenuated strain of vaccinia virus. Virology, 1992; 188, 217−32. doi:  10.1016/0042-6822(92)90752-B
[47] Midgley CM, Putz MM, Weber JN, et al. Vaccinia virus strain NYVAC induces substantially lower and qualitatively different human antibody responses compared with strains Lister and Dryvax. J Gen Virol, 2008; 89, 2992−7. doi:  10.1099/vir.0.2008/004440-0
[48] Jiang F, Liu YP, Xue Y, et al. Developing a multiepitope vaccine for the prevention of SARS-CoV-2 and monkeypox virus co-infection: a reverse vaccinology analysis. Int Immunopharmacol, 2023; 115, 109728. doi:  10.1016/j.intimp.2023.109728
[49] Zaib S, Rana N, Areeba, et al. Designing multi-epitope monkeypox virus-specific vaccine using immunoinformatics approach. J Infect Public Health, 2023; 16, 107−16. doi:  10.1016/j.jiph.2022.11.033
[50] Wang Y, Yang KW, Zhou H. Immunogenic proteins and potential delivery platforms for mpox virus vaccine development: a rapid review. Int J Biol Macromol, 2023; 245, 125515. doi:  10.1016/j.ijbiomac.2023.125515
[51] Buchman GW, Cohen ME, Xiao YH, et al. A protein-based smallpox vaccine protects non-human primates from a lethal monkeypox virus challenge. Vaccine, 2010; 28, 6627−36. doi:  10.1016/j.vaccine.2010.07.030
[52] Fogg C, Lustig S, Whitbeck JC, et al. Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J Virol, 2004; 78, 10230−7. doi:  10.1128/JVI.78.19.10230-10237.2004
[53] Davies DH, McCausland MM, Valdez C, et al. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J Virol, 2005; 79, 11724−33. doi:  10.1128/JVI.79.18.11724-11733.2005
[54] Tang D, Liu XK, Lu J, et al. Recombinant proteins A29L, M1R, A35R, and B6R vaccination protects mice from mpox virus challenge. Front Immunol, 2023; 14, 1203410. doi:  10.3389/fimmu.2023.1203410
[55] Wang H, Yin P, Zheng TT, et al. Rational design of a 'two-in-one' immunogen DAM drives potent immune response against mpox virus. Nat Immunol, 2024; 25, 307−15. doi:  10.1038/s41590-023-01715-7
[56] Tan CX, Zhu F, Pan PH, et al. Development of multi-epitope vaccines against the monkeypox virus based on envelope proteins using immunoinformatics approaches. Front Immunol, 2023; 14, 1112816. doi:  10.3389/fimmu.2023.1112816
[57] Quach HQ, Ovsyannikova IG, Poland GA, et al. Evaluating immunogenicity of pathogen-derived T-cell epitopes to design a peptide-based smallpox vaccine. Sci Rep, 2022; 12, 15401. doi:  10.1038/s41598-022-19679-3
[58] Golden JW, Zaitseva M, Kapnick S, et al. Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. Virol J, 2011; 8, 441. doi:  10.1186/1743-422X-8-441
[59] Mucker EM, Golden JW, Hammerbeck CD, et al. A nucleic acid-based orthopoxvirus vaccine targeting the vaccinia virus L1, A27, B5, and A33 proteins protects rabbits against lethal Rabbitpox virus aerosol challenge. J. Virol, 2022; 96, e0150421. doi:  10.1128/JVI.01504-21
[60] Fang ZH, Monteiro VS, Renauer PA, et al. Polyvalent mRNA vaccination elicited potent immune response to monkeypox virus surface antigens. Cell Res, 2023; 33, 407−10. doi:  10.1038/s41422-023-00792-5
[61] Sang Y, Zhang Z, Liu F, et al. Monkeypox virus quadrivalent mRNA vaccine induces immune response and protects against vaccinia virus. Sig Transduct Target Ther, 2023; 8, 172. doi:  10.1038/s41392-023-01432-5
[62] Zeng JW, Li Y, Jiang LR, et al. Mpox multi-antigen mRNA vaccine candidates by a simplified manufacturing strategy afford efficient protection against lethal orthopoxvirus challenge. Emerg Microbes Infect, 2023; 12, 2204151. doi:  10.1080/22221751.2023.2204151
[63] Hou FJ, Zhang YT, Liu XH, et al. mRNA vaccines encoding fusion proteins of monkeypox virus antigens protect mice from vaccinia virus challenge. Nat Commun, 2023; 14, 5925. doi:  10.1038/s41467-023-41628-5
[64] Zhang RR, Wang ZJ, Zhu YL, et al. Rational development of multicomponent mRNA vaccine candidates against mpox. Emerg Microbes Infect, 2023; 12, 2192815. doi:  10.1080/22221751.2023.2192815