[1] |
Antinori A, Mazzotta V, Vita S, et al. Epidemiological, clinical and virological characteristics of four cases of monkeypox support transmission through sexual contact, Italy, May 2022. Euro Surveill, 2022; 27, 2200421. |
[2] |
Brown K, Leggat PA. Human monkeypox: current state of knowledge and implications for the future. Trop Med Infect Dis, 2016; 1, 8. doi: 10.3390/tropicalmed1010008 |
[3] |
Luo MH, Zhao L, Wu CC, et al. Establishment of CRISPR/Cas12a-based molecular detection method for monkeypox virus. Chin J Exp Clin Virol, 2023; 37, 193−200. (In Chinese) |
[4] |
McCollum AM, Damon IK. Human monkeypox. Clin Infect Dis, 2014; 58, 260−7. doi: 10.1093/cid/cit703 |
[5] |
Isidro J, Borges V, Pinto M, et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med, 2022; 28, 1569−72. doi: 10.1038/s41591-022-01907-y |
[6] |
Poland GA, Kennedy RB, Tosh PK. Prevention of monkeypox with vaccines: a rapid review. Lancet Infect Dis, 2022; 22, e349−58. doi: 10.1016/S1473-3099(22)00574-6 |
[7] |
Tan WJ, Gao GF. Neglected zoonotic monkeypox in Africa but now back in the spotlight worldwide. China CDC Wkly, 2022; 4, 847−8. |
[8] |
Zhao H, Wang WL, Zhao L, et al. The first imported case of monkeypox in the mainland of China — Chongqing Municipality, China, September 16, 2022. China CDC Wkly, 2022; 4, 853−4. |
[9] |
China CDC. Mpox. https://www.chinacdc.cn/jkzt/crb/zl/szkb_13037/. [2022-11-28]. (In Chinese) |
[10] |
Desai AN, Malani PN. JYNNEOS vaccine for Mpox. JAMA, 2023; 329, 1995. doi: 10.1001/jama.2023.9873 |
[11] |
Persad G, Leland RJ, Ottersen T, et al. Fair domestic allocation of monkeypox virus countermeasures. Lancet Public Health, 2023; 8, e378−82. doi: 10.1016/S2468-2667(23)00061-0 |
[12] |
World Health Organization. Mpox (monkeypox): is there a vaccine against mpox? https://www.who.int/zh/news-room/questions-and-answers/item/monkeypox. [2023-12-11]. |
[13] |
Huang Y, Mu L, Wang W. Monkeypox: epidemiology, pathogenesis, treatment and prevention. Sig Transduct Target Ther, 2022; 7, 373. doi: 10.1038/s41392-022-01215-4 |
[14] |
Meisinger-Henschel C, Schmidt M, Lukassen S, et al. Genomic sequence of chorioallantois vaccinia virus Ankara, the ancestor of modified vaccinia virus Ankara. J Gen Virol, 2007; 88, 3249−59. doi: 10.1099/vir.0.83156-0 |
[15] |
Katamesh BE, Madany M, Labieb F, et al. Monkeypox pandemic containment: Does the ACAM2000 vaccine play a role in the current outbreaks? Expert Rev Vaccines, 2023; 22, 366-68. |
[16] |
Pittman PR, Hahn M, Lee HS, et al. Phase 3 efficacy trial of modified vaccinia Ankara as a vaccine against smallpox. N Engl J Med, 2019; 381, 1897−908. doi: 10.1056/NEJMoa1817307 |
[17] |
Nave L, Margalit I, Tau N, et al. Immunogenicity and safety of Modified Vaccinia Ankara (MVA) vaccine-a systematic review and meta-analysis of randomized controlled trials. Vaccines (Basel), 2023; 11, 1410. doi: 10.3390/vaccines11091410 |
[18] |
Saadh MJ, Ghadimkhani T, Soltani N, et al. Progress and prospects on vaccine development against monkeypox infection. Microb Pathog, 2023; 180, 106156. doi: 10.1016/j.micpath.2023.106156 |
[19] |
Ladhani SN, Dowell AC, Jones S, et al. Early evaluation of the safety, reactogenicity, and immune response after a single dose of modified vaccinia Ankara-Bavaria Nordic vaccine against mpox in children: a national outbreak response. Lancet Infect Dis, 2023; 23, 1042−50. doi: 10.1016/S1473-3099(23)00270-0 |
[20] |
Fontán-Vela M, Hernando V, Olmedo C, et al. Effectiveness of modified vaccinia Ankara-Bavaria Nordic vaccination in a population at high risk of mpox: a Spanish cohort study. Clin Infect Dis, 2024; 78, 476−83. doi: 10.1093/cid/ciad645 |
[21] |
Wolff Sagy Y, Zucker R, Hammerman A, et al. Real-world effectiveness of a single dose of mpox vaccine in males. Nat Med, 2023; 29, 748−52. doi: 10.1038/s41591-023-02229-3 |
[22] |
Zaeck LM, Lamers MM, Verstrepen BE, et al. Low levels of monkeypox virus-neutralizing antibodies after MVA-BN vaccination in healthy individuals. Nat Med, 2023; 29, 270−8. doi: 10.1038/s41591-022-02090-w |
[23] |
Bottanelli M, Messina E, Raccagni AR, et al. A case of breakthrough mpox infection in an individual non-responder to MVA-BN vaccination. Lancet Infect Dis, 2024; 24, e11−2. doi: 10.1016/S1473-3099(23)00741-7 |
[24] |
Johnson BF, Kanatani Y, Fujii T, et al. Serological responses in humans to the smallpox vaccine LC16m8. J Gen Virol, 2011; 92, 2405−10. doi: 10.1099/vir.0.034207-0 |
[25] |
Eto A, Fujita M, Nishiyama Y, et al. Profiling of the antibody response to attenuated LC16m8 smallpox vaccine using protein array analysis. Vaccine, 2019; 37, 6588−93. doi: 10.1016/j.vaccine.2019.09.006 |
[26] |
Eto A, Saito T, Yokote H, et al. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8. Vaccine, 2015; 33, 6106−11. doi: 10.1016/j.vaccine.2015.07.111 |
[27] |
Saito T, Fujii T, Kanatani Y, et al. Clinical and immunological response to attenuated tissue-cultured smallpox vaccine LC16m8. JAMA, 2009; 301, 1025−33. doi: 10.1001/jama.2009.289 |
[28] |
Morino E, Mine S, Tomita N, et al. Mpox neutralizing antibody response to LC16m8 vaccine in healthy adults. NEJM Evid, 2024; 3, EVIDoa2300290. |
[29] |
Maksyutov RA, Yakubitskyi SN, Kolosova IV, et al. Comparing new-generation candidate vaccines against human orthopoxvirus infections. Acta Nat, 2017; 9, 88−93. |
[30] |
Li ET, Guo XP, Hong DX, et al. Duration of humoral immunity from smallpox vaccination and its cross-reaction with Mpox virus. Sig Transduct Target Ther, 2023; 8, 350. doi: 10.1038/s41392-023-01574-6 |
[31] |
Yang L, Chen YS, Li S, et al. Immunization of mice with vaccinia virus Tiantan strain yields antibodies cross-reactive with protective antigens of monkeypox virus. Virol Sin, 2023; 38, 162−4. doi: 10.1016/j.virs.2022.10.004 |
[32] |
Zhen ZD, Zhang LL, Li Q, et al. Cross-reactive antibodies against monkeypox virus exist in the population immunized with vaccinia Tian Tan strain in China. Infect Genet Evol, 2023; 113, 105477. doi: 10.1016/j.meegid.2023.105477 |
[33] |
Zhao Y, Huang PP, Zhao L, et al. Cytobiological characteristics and investigation of replication-defective mechanism of non-replicating Tiantan Vaccinia virus. Chin J Virol, 2019; 35, 58−63. (In Chinese) |
[34] |
Zhao Y, Zhao L, Huang PP, et al. Non-replicating vaccinia virus TianTan Strain (NTV) translation arrest of viral late protein synthesis associated with anti-viral host factor SAMD9. Front Cell Infect Microbiol, 2020; 10, 116. doi: 10.3389/fcimb.2020.00116 |
[35] |
Huang PP, Zhao L, Ren J, et al. Preliminary exploration of replication-defective mechanism of highly attenuated NTV strain of vaccinia virus Tiantan. Chin J Exp Clin Virol, 2018; 32, 119−23. (In Chinese) |
[36] |
Zhang P, Zhao Y, Zhao L, et al. Construction and virulence evaluation of nonreplicative vaccinia virus modified strain NTV-C7L. Chin J Exp Clin Virol, 2020; 34, 72−7. (In Chinese) |
[37] |
Yuan H, Wu YB, Ren J, et al. Non-replicating vaccinia virus Tiantan strain NTV induces early apoptosis. Chin J Exp Clin Virol, 2022; 36, 136−40. (In Chinese) |
[38] |
Wu YB, Zhao L, Ren J, et al. CRISPR-Cas9 system for construction of highly efficient recombinant vaccinia virus. Chin J Exp Clin Virol, 2021; 35, 199−204. (In Chinese) |
[39] |
Ruan L. Research and application of vaccinia virus Tiantan strain vector. J Microbes Infect, 2013; 8, 2−8. (In Chinese) |
[40] |
Chu QH, Huang BY, Li MZ, et al. Non-replicating vaccinia virus NTV as an effective next-generation smallpox and monkeypox vaccine: evidence from mouse and rhesus monkey models. Emerg Microbes Infect, 2023; 12, 2278900. doi: 10.1080/22221751.2023.2278900 |
[41] |
Zhu WJ, Fang Q, Zhuang K, et al. The attenuation of vaccinia Tian Tan strain by the removal of the viral M1L-K2L genes. J Virol Methods, 2007; 144, 17−26. doi: 10.1016/j.jviromet.2007.03.012 |
[42] |
Liu Z, Liu Y, Wang SH, et al. Construction of expression vector of recombinant vaccinia virus TianTan strain with C8L-K3L region deletion and study on biological properties of the recombinant virus. Chin J Microbiol Immunol, 2013; 33, 434−9. (In Chinese) |
[43] |
Kan SF, Wang YH, Sun LL, et al. Attenuation of vaccinia Tian Tan strain by removal of viral TC7L-TK2L and TA35R genes. PLoS One, 2012; 7, e31979. doi: 10.1371/journal.pone.0031979 |
[44] |
Lim H, In HJ, Kim YJ, et al. Development of an attenuated smallpox vaccine candidate: the KVAC103 strain. Vaccine, 2021; 39, 5214−23. doi: 10.1016/j.vaccine.2021.06.060 |
[45] |
Hwang YH, Byeon Y, Ahn SH, et al. Live attenuated smallpox vaccine candidate (KVAC103) efficiently induces protective immune responses in mice. Vaccine, 2024; 42, 1283−91. doi: 10.1016/j.vaccine.2024.01.064 |
[46] |
Tartaglia J, Perkus ME, Taylor J, et al. NYVAC: a highly attenuated strain of vaccinia virus. Virology, 1992; 188, 217−32. doi: 10.1016/0042-6822(92)90752-B |
[47] |
Midgley CM, Putz MM, Weber JN, et al. Vaccinia virus strain NYVAC induces substantially lower and qualitatively different human antibody responses compared with strains Lister and Dryvax. J Gen Virol, 2008; 89, 2992−7. doi: 10.1099/vir.0.2008/004440-0 |
[48] |
Jiang F, Liu YP, Xue Y, et al. Developing a multiepitope vaccine for the prevention of SARS-CoV-2 and monkeypox virus co-infection: a reverse vaccinology analysis. Int Immunopharmacol, 2023; 115, 109728. doi: 10.1016/j.intimp.2023.109728 |
[49] |
Zaib S, Rana N, Areeba, et al. Designing multi-epitope monkeypox virus-specific vaccine using immunoinformatics approach. J Infect Public Health, 2023; 16, 107−16. doi: 10.1016/j.jiph.2022.11.033 |
[50] |
Wang Y, Yang KW, Zhou H. Immunogenic proteins and potential delivery platforms for mpox virus vaccine development: a rapid review. Int J Biol Macromol, 2023; 245, 125515. doi: 10.1016/j.ijbiomac.2023.125515 |
[51] |
Buchman GW, Cohen ME, Xiao YH, et al. A protein-based smallpox vaccine protects non-human primates from a lethal monkeypox virus challenge. Vaccine, 2010; 28, 6627−36. doi: 10.1016/j.vaccine.2010.07.030 |
[52] |
Fogg C, Lustig S, Whitbeck JC, et al. Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J Virol, 2004; 78, 10230−7. doi: 10.1128/JVI.78.19.10230-10237.2004 |
[53] |
Davies DH, McCausland MM, Valdez C, et al. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J Virol, 2005; 79, 11724−33. doi: 10.1128/JVI.79.18.11724-11733.2005 |
[54] |
Tang D, Liu XK, Lu J, et al. Recombinant proteins A29L, M1R, A35R, and B6R vaccination protects mice from mpox virus challenge. Front Immunol, 2023; 14, 1203410. doi: 10.3389/fimmu.2023.1203410 |
[55] |
Wang H, Yin P, Zheng TT, et al. Rational design of a 'two-in-one' immunogen DAM drives potent immune response against mpox virus. Nat Immunol, 2024; 25, 307−15. doi: 10.1038/s41590-023-01715-7 |
[56] |
Tan CX, Zhu F, Pan PH, et al. Development of multi-epitope vaccines against the monkeypox virus based on envelope proteins using immunoinformatics approaches. Front Immunol, 2023; 14, 1112816. doi: 10.3389/fimmu.2023.1112816 |
[57] |
Quach HQ, Ovsyannikova IG, Poland GA, et al. Evaluating immunogenicity of pathogen-derived T-cell epitopes to design a peptide-based smallpox vaccine. Sci Rep, 2022; 12, 15401. doi: 10.1038/s41598-022-19679-3 |
[58] |
Golden JW, Zaitseva M, Kapnick S, et al. Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. Virol J, 2011; 8, 441. doi: 10.1186/1743-422X-8-441 |
[59] |
Mucker EM, Golden JW, Hammerbeck CD, et al. A nucleic acid-based orthopoxvirus vaccine targeting the vaccinia virus L1, A27, B5, and A33 proteins protects rabbits against lethal Rabbitpox virus aerosol challenge. J. Virol, 2022; 96, e0150421. doi: 10.1128/JVI.01504-21 |
[60] |
Fang ZH, Monteiro VS, Renauer PA, et al. Polyvalent mRNA vaccination elicited potent immune response to monkeypox virus surface antigens. Cell Res, 2023; 33, 407−10. doi: 10.1038/s41422-023-00792-5 |
[61] |
Sang Y, Zhang Z, Liu F, et al. Monkeypox virus quadrivalent mRNA vaccine induces immune response and protects against vaccinia virus. Sig Transduct Target Ther, 2023; 8, 172. doi: 10.1038/s41392-023-01432-5 |
[62] |
Zeng JW, Li Y, Jiang LR, et al. Mpox multi-antigen mRNA vaccine candidates by a simplified manufacturing strategy afford efficient protection against lethal orthopoxvirus challenge. Emerg Microbes Infect, 2023; 12, 2204151. doi: 10.1080/22221751.2023.2204151 |
[63] |
Hou FJ, Zhang YT, Liu XH, et al. mRNA vaccines encoding fusion proteins of monkeypox virus antigens protect mice from vaccinia virus challenge. Nat Commun, 2023; 14, 5925. doi: 10.1038/s41467-023-41628-5 |
[64] |
Zhang RR, Wang ZJ, Zhu YL, et al. Rational development of multicomponent mRNA vaccine candidates against mpox. Emerg Microbes Infect, 2023; 12, 2192815. doi: 10.1080/22221751.2023.2192815 |