[1] |
World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. 2024. https://dashboards-dev.sprinklr.com/. |
[2] |
Uraki R, Kiso M, Iida S, et al. Characterization and antiviral susceptibility of SARS-CoV-2 Omicron/BA. 2. Nature, 2022; 607, 119-27 . DOI: 10.1038/s41586-022-04856-1. |
[3] |
Shrestha LB, Foster C, Rawlinson W, et al. Evolution of the SARS-CoV-2 omicron variants BA. 1 to BA. 5: implications for immune escape and transmission. Rev Med Virol, 2022; 32, e2381. doi: 10.1002/rmv.2381 |
[4] |
Li P, Faraone JN, Hsu CC, et al. Characteristics of JN. 1-derived SARS-CoV-2 subvariants SLip, FLiRT, and KP. 2 in neutralization escape, infectivity and membrane fusion. https://doi.org/10.1101/2024.05.20.595020. [2024-05-21]. |
[5] |
Tamura T, Ito J, Uriu K, et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nat Commun, 2023; 14, 2800. doi: 10.1038/s41467-023-38435-3 |
[6] |
Muik A, Lui BG, Bacher M, et al. Omicron BA. 2 breakthrough infection enhances cross-neutralization of BA. 2.12. 1 and BA. 4/BA. 5. Sci Immunol, 2022; 7, eade2283. doi: 10.1126/sciimmunol.ade2283 |
[7] |
World Health Organization. Draft landscape and tracker of COVID-19 candidate vaccines. 2024. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines |
[8] |
Pollet J, Chen WH, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Delivery Rev, 2021; 170, 71−82. doi: 10.1016/j.addr.2021.01.001 |
[9] |
Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020; 181, 281-92. e6. |
[10] |
Panina-Bordignon P, Tan A, Termijtelen A, et al. Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol, 1989; 19, 2237−42. doi: 10.1002/eji.1830191209 |
[11] |
Cai H, Chen MS, Sun ZY, et al. Self-adjuvanting synthetic antitumor vaccines from MUC1 glycopeptides conjugated to T-cell epitopes from tetanus toxoid. Angew Chem Int Ed, 2013; 52, 6106−10. doi: 10.1002/anie.201300390 |
[12] |
Wu F, Yuan XY, Li J, et al. The co-administration of CpG-ODN influenced protective activity of influenza M2e vaccine. Vaccine, 2009; 27, 4320−4. doi: 10.1016/j.vaccine.2009.04.075 |
[13] |
Pun PB, Bhat AA, Mohan T, et al. Intranasal administration of peptide antigens of HIV with mucosal adjuvant CpG ODN coentrapped in microparticles enhances the mucosal and systemic immune responses. Int Immunopharmacol, 2009; 9, 468−77. doi: 10.1016/j.intimp.2009.01.012 |
[14] |
Kumar S, Jones TR, Oakley MS, et al. CpG oligodeoxynucleotide and Montanide ISA 51 adjuvant combination enhanced the protective efficacy of a subunit malaria vaccine. Infect Immun, 2004; 72, 949−57. doi: 10.1128/IAI.72.2.949-957.2004 |
[15] |
Zhang YT, Zheng XT, Sheng W, et al. Alum/CpG adjuvanted inactivated COVID-19 vaccine with protective efficacy against SARS-CoV-2 and variants. Vaccines (Basel), 2022; 10, 1208. doi: 10.3390/vaccines10081208 |
[16] |
Nanishi E, Borriello F, O’Meara TR, et al. An aluminum hydroxide: CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor binding domain vaccine in aged mice. Sci Transl Med, 2022; 14, eabj5305. doi: 10.1126/scitranslmed.abj5305 |
[17] |
Deng Y, Lan JM, Bao LL, et al. Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus. Emerg Microbes Infect, 2018; 7, 60. |
[18] |
Gong MQ, Zhou J, Yang CT, et al. Insect cell-expressed hemagglutinin with CpG oligodeoxynucleotides plus alum as an adjuvant is a potential pandemic influenza vaccine candidate. Vaccine, 2012; 30, 7498−505. doi: 10.1016/j.vaccine.2012.10.054 |
[19] |
Xiao TY, Liu HC, Li XQ, et al. Immunological evaluation of a novel mycobacterium tuberculosis antigen Rv0674. Biomed Environ Sci, 2019; 32, 427−37. |
[20] |
Chen WH, Pollet J, Strych U, et al. Yeast-expressed recombinant SARS-CoV-2 receptor binding domain RBD203-N1 as a COVID-19 protein vaccine candidate. Protein Expression Purif, 2022; 190, 106003. doi: 10.1016/j.pep.2021.106003 |
[21] |
Su QD, Zou YN, Yi Y, et al. Recombinant SARS-CoV-2 RBD with a built in T helper epitope induces strong neutralization antibody response. Vaccine, 2021; 39, 1241−7. doi: 10.1016/j.vaccine.2021.01.044 |
[22] |
He YX, Zhou YS, Liu SW, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun, 2004; 324, 773−81. doi: 10.1016/j.bbrc.2004.09.106 |
[23] |
Ai JW, Wang X, He XY, et al. Antibody evasion of SARS-CoV-2 Omicron BA. 1, BA. 1.1, BA. 2, and BA. 3 sub-lineages. Cell Host Microbe, 2022; 30, 1077−83. doi: 10.1016/j.chom.2022.05.001 |
[24] |
Hu YM, Huang SJ, Chu K, et al. Safety of an Escherichia coli-expressed bivalent human papillomavirus (types 16 and 18) L1 virus-like particle vaccine: an open-label phase I clinical trial. Hum Vaccines Immunother, 2014; 10, 469−75. doi: 10.4161/hv.26846 |
[25] |
Zhu FC, Zhang J, Zhang XF, et al. Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: a large-scale, randomised, double-blind placebo-controlled, phase 3 trial. Lancet, 2010; 376, 895−902. doi: 10.1016/S0140-6736(10)61030-6 |
[26] |
Lee SH, Carpenter JF, Chang BS, et al. Effects of solutes on solubilization and refolding of proteins from inclusion bodies with high hydrostatic pressure. Protein Sci, 2006; 15, 304−13. doi: 10.1110/ps.051813506 |
[27] |
Fraga TR, Chura-Chambi RM, Gonçales AP, et al. Refolding of the recombinant protein OmpA70 from Leptospira interrogans from inclusion bodies using high hydrostatic pressure and partial characterization of its immunological properties. J Biotechnol, 2010; 148, 156−62. doi: 10.1016/j.jbiotec.2010.04.007 |
[28] |
Deng TT, Li TT, Chen GG, et al. Characterization and immunogenicity of SARS-CoV-2 spike proteins with varied glycosylation. Vaccine, 2022; 40, 6839−48. doi: 10.1016/j.vaccine.2022.09.057 |
[29] |
Shajahan A, Supekar NT, Gleinich AS, et al. Deducing the N-and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology, 2020; 30, 981−8. doi: 10.1093/glycob/cwaa042 |
[30] |
Huang HY, Liao HY, Chen XR, et al. Vaccination with SARS-CoV-2 spike protein lacking glycan shields elicits enhanced protective responses in animal models. Sci Transl Med, 2022; 14, eabm0899. doi: 10.1126/scitranslmed.abm0899 |
[31] |
De Marco Verissimo C, Corrales JL, Dorey AL, et al. Production of a functionally active recombinant SARS-CoV-2 (COVID-19) 3C-like protease and a soluble inactive 3C-like protease-RBD chimeric in a prokaryotic expression system. Epidemiol Infect, 2022; 150, e128. doi: 10.1017/S0950268822001078 |
[32] |
Merkuleva IA, Shcherbakov DN, Borgoyakova MB, et al. Comparative immunogenicity of the recombinant receptor-binding domain of protein S SARS-CoV-2 obtained in prokaryotic and mammalian expression systems. Vaccines (Basel), 2022; 10, 96. doi: 10.3390/vaccines10010096 |
[33] |
Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol, 1999; 17, 593−623. doi: 10.1146/annurev.immunol.17.1.593 |
[34] |
Davis H L, Weeranta R, Waldschmidt T J, et al. CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J Immunol, 1998; 160, 870−6. doi: 10.4049/jimmunol.160.2.870 |
[35] |
Krieg AM, Yi AK, Matson S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature, 1995; 374, 546−9. doi: 10.1038/374546a0 |
[36] |
Kumar A, Arora R, Kaur P, et al. "Universal" T helper cell determinants enhance immunogenicity of a Plasmodium falciparum merozoite surface antigen peptide. J Immunol, 1992; 148, 1499−505. doi: 10.4049/jimmunol.148.5.1499 |
[37] |
Thimmiraju SR, Adhikari R, Villar MJ, et al. A recombinant protein XBB. 1.5 RBD/Alum/CpG vaccine elicits high neutralizing antibody titers against omicron subvariants of SARS-CoV-2. Vaccines (Basel), 2023; 11, 1557. doi: 10.3390/vaccines11101557 |
[38] |
Channabasappa NK, Niranjan AK, Emran TB. SARS-CoV-2 variant omicron XBB. 1.5: challenges and prospects-correspondence. Int J Surg, 2023; 109, 1054−5. doi: 10.1097/JS9.0000000000000276 |
[39] |
Muik A, Lui B G, Bacher M, et al. Exposure to BA. 4/5 S protein drives neutralization of Omicron BA. 1, BA. 2, BA. 2.12. 1, and BA. 4/5 in vaccine-experienced humans and mice. Sci Immunol, 2022; 7, eade9888. doi: 10.1126/sciimmunol.ade9888 |
[40] |
Lederer K, Castaño D, Atria DG, et al. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation. Immunity, 2020; 53, 1281-95. e5. |
[41] |
Kato H, Miyakawa K, Ohtake N, et al. Vaccine-induced humoral response against SARS-CoV-2 dramatically declined but cellular immunity possibly remained at 6 months post BNT162b2 vaccination. Vaccine, 2022; 40, 2652−5. doi: 10.1016/j.vaccine.2022.03.057 |
[42] |
Steiner S, Schwarz T, Corman VM, et al. Reactive T cells in convalescent COVID-19 patients with negative SARS-CoV-2 antibody serology. Front Immunol, 2021; 12, 687449. doi: 10.3389/fimmu.2021.687449 |
[43] |
Feng CQ, Shi JR, Fan QH, et al. Protective humoral and cellular immune responses to SARS-CoV-2 persist up to 1 year after recovery. Nat Commun, 2021; 12, 4984. doi: 10.1038/s41467-021-25312-0 |
[44] |
Kumagai Y, Takeuchi O, Akira S. TLR9 as a key receptor for the recognition of DNA. Adv Drug Delivery Rev, 2008; 60, 795−804. doi: 10.1016/j.addr.2007.12.004 |
[45] |
He WX, Zhang YQ, Zhang J, et al. Cytidine-phosphate-guanosine oligonucleotides induce interleukin-8 production through activation of TLR9, MyD88, NF-κB, and ERK pathways in odontoblast cells. J Endod, 2012; 38, 780−5. doi: 10.1016/j.joen.2012.02.026 |
[46] |
Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol, 1989; 7, 145−73. doi: 10.1146/annurev.iy.07.040189.001045 |
[47] |
Qi M, Zhang XE, Sun XX, et al. Intranasal nanovaccine confers homo- and hetero-subtypic influenza protection. Small, 2018; 14, e1703207. doi: 10.1002/smll.201703207 |
[48] |
He P, Zou YN, Hu ZY. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum Vaccines Immunother, 2015; 11, 477−88. doi: 10.1080/21645515.2014.1004026 |
[49] |
Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol, 2020; 38, 1−9. |
[50] |
Liang JG, Su DM, Song TZ, et al. S-trimer, a COVID-19 subunit vaccine candidate, induces protective immunity in nonhuman primates. Nat Commun, 2021; 12, 1346. doi: 10.1038/s41467-021-21634-1 |
[51] |
Leal L, Pich J, Ferrer L, et al. Safety and immunogenicity of a recombinant protein RBD fusion heterodimer vaccine against SARS-CoV-2. NPJ Vaccines, 2023; 8, 147. doi: 10.1038/s41541-023-00736-5 |