[1] Yang J, Jia ZL, Song XY, et al. Proteomic and clinical biomarkers for acute mountain sickness in a longitudinal cohort. Commun Biol, 2022; 5, 548. doi:  10.1038/s42003-022-03514-6
[2] Roach RC, Hackett PH, Oelz O, et al. The 2018 Lake Louise acute mountain sickness score. High Alt Med Biol, 2018; 19, 4−6. doi:  10.1089/ham.2017.0164
[3] Barclay H, Mukerji S, Kayser B, et al. Respiratory alkalinization and posterior cerebral artery dilatation predict acute mountain sickness severity during 10 h normobaric hypoxia. Exp Physiol, 2021; 106, 175−90. doi:  10.1113/EP088938
[4] Ross RT. The random nature of cerebral mountain sickness. Lancet, 1985; 325, 990−1. doi:  10.1016/S0140-6736(85)91771-4
[5] Boos CJ, Bass M, O'Hara JP, et al. The relationship between anxiety and acute mountain sickness. PLoS One, 2018; 13, e0197147. doi:  10.1371/journal.pone.0197147
[6] Feddersen B, Ausserer H, Neupane P, et al. Right temporal cerebral dysfunction heralds symptoms of acute mountain sickness. J Neurol, 2007; 254, 359−63. doi:  10.1007/s00415-006-0376-8
[7] Faulhaber M, Wille M, Gatterer H, et al. Resting arterial oxygen saturation and breathing frequency as predictors for acute mountain sickness development: a prospective cohort study. Sleep Breath, 2014; 18, 669−74. doi:  10.1007/s11325-013-0932-2
[8] Muza SR. Wearable physiological sensors and real-time algorithms for detection of acute mountain sickness. J Appl Physiol (1985), 2018; 124, 557−63. doi:  10.1152/japplphysiol.00367.2017
[9] Wei CY, Chen PN, Lin SS, et al. Using machine learning to determine the correlation between physiological and environmental parameters and the induction of acute mountain sickness. BMC Bioinformatics, 2022; 22, 628.
[10] Avcil M, Yolcubal A, Özlüer YE, et al. Matrix metalloproteinase-9 and substance-P as predictors for early-stage diagnosis of acute mountain sickness. Am J Emerg Med, 2022; 59, 100−5. doi:  10.1016/j.ajem.2022.07.001
[11] Liu B, Xu G, Sun BD, et al. Clinical and biochemical indices of people with high-altitude experience linked to acute mountain sickness. Travel Med Infect Dis, 2023; 51, 102506. doi:  10.1016/j.tmaid.2022.102506
[12] Xu ZC, Li Q, Shen XB. AZU1 (HBP/CAP37) and PRKCG (PKC-gamma) may be candidate genes affecting the severity of acute mountain sickness. BMC Med Genomics, 2023; 16, 28. doi:  10.1186/s12920-023-01457-3
[13] Liu B, Huang H, Wu G, et al. A signature of circulating microRNAs predicts the susceptibility of acute mountain sickness. Front Physiol, 2017; 8, 55.
[14] Huang H, Dong HP, Zhang JY, et al. The role of salivary miR-134-3p and miR-15b-5p as potential non-invasive predictors for not developing acute mountain sickness. Front Physiol, 2019; 10, 898. doi:  10.3389/fphys.2019.00898
[15] Guo HR, Wang Q, Li T, et al. Potential plasma biomarkers at low altitude for prediction of acute mountain sickness. Front Immunol, 2023; 14, 1237465. doi:  10.3389/fimmu.2023.1237465
[16] Bian SZ, Jin J, Li QN, et al. Hemodynamic characteristics of high-altitude headache following acute high altitude exposure at 3700 m in young Chinese men. J Headache Pain, 2015; 16, 43. doi:  10.1186/s10194-015-0527-3
[17] Bian SZ, Jin J, Li QN, et al. Cerebral hemodynamic characteristics of acute mountain sickness upon acute high-altitude exposure at 3, 700 m in young Chinese men. Eur J Appl Physiol, 2014; 114, 2193−200. doi:  10.1007/s00421-014-2934-6
[18] Liu WJ, Liu J, Lou X, et al. A longitudinal study of cerebral blood flow under hypoxia at high altitude using 3D pseudo-continuous arterial spin labeling. Sci Rep, 2017; 7, 43246. doi:  10.1038/srep43246
[19] Ho ML. Arterial spin labeling: clinical applications. J Neuroradiol, 2018; 45, 276−89. doi:  10.1016/j.neurad.2018.06.003
[20] Loggia ML, Segerdahl AR, Howard MA, et al. Imaging clinically relevant pain states using arterial spin labeling. Pain Rep, 2019; 4, e750. doi:  10.1097/PR9.0000000000000750
[21] Tatu L, Moulin T, Vuillier F, et al. Arterial territories of the human brain. Front Neurol Neurosci, 2012; 30, 99−110.
[22] Ha JY, Choi YH, Lee S, et al. Arterial spin labeling MRI for quantitative assessment of cerebral perfusion before and after cerebral revascularization in children with Moyamoya Disease. Korean J Radiol, 2019; 20, 985−96. doi:  10.3348/kjr.2018.0651
[23] Shang SA, Wu JT, Zhang HY, et al. Motor asymmetry related cerebral perfusion patterns in Parkinson's disease: an arterial spin labeling study. Hum Brain Mapp, 2021; 42, 298−309. doi:  10.1002/hbm.25223
[24] McCullough LD, Hurn PD. Estrogen and ischemic neuroprotection: an integrated view. Trends Endocrinol Metab, 2003; 14, 228−35. doi:  10.1016/S1043-2760(03)00076-6
[25] Hurn PD, Macrae IM. Estrogen as a neuroprotectant in stroke. J Cereb Blood Flow Metab, 2000; 20, 631−52. doi:  10.1097/00004647-200004000-00001
[26] Hurn PD, Littleton-Kearney MT, Kirsch JR, et al. Postischemic cerebral blood flow recovery in the female: effect of 17β-estradiol. J Cereb Blood Flow Metab, 1995; 15, 666−72. doi:  10.1038/jcbfm.1995.82
[27] Xia MN, Yang SH, Simpkins JW, et al. Noninvasive monitoring of estrogen effects against ischemic stroke in rats by near-infrared spectroscopy. Appl Opt, 2007; 46, 8315−21. doi:  10.1364/AO.46.008315
[28] Gonggalanzi, Labasangzhu, Nafstad P, et al. Acute mountain sickness among tourists visiting the high-altitude city of Lhasa at 3658 m above sea level: a cross-sectional study. Arch Public Health, 2016; 74, 23. doi:  10.1186/s13690-016-0134-z
[29] Wilson MH, Imray CHE, Hargens AR. The headache of high altitude and microgravity-similarities with clinical syndromes of cerebral venous hypertension. High Alt Med Biol, 2011; 12, 379−86. doi:  10.1089/ham.2011.1026
[30] Wilson MH, Davagnanam I, Holland G, et al. Cerebral venous system and anatomical predisposition to high-altitude headache. Ann Neurol, 2013; 73, 381−9. doi:  10.1002/ana.23796
[31] Mikhail Kellawan J, Harrell JW, Roldan-Alzate A, et al. Regional hypoxic cerebral vasodilation facilitated by diameter changes primarily in anterior versus posterior circulation. J Cereb Blood Flow Metab, 2017; 37, 2025−34. doi:  10.1177/0271678X16659497
[32] Jansen GFA, Kagenaar DA, Basnyat B, et al. Basilar artery blood flow velocity and the ventilatory response to acute hypoxia in mountaineers. Respir Physiol Neurobiol, 2002; 133, 65−74. doi:  10.1016/S1569-9048(02)00152-0
[33] Carod-Artal FJ. High-altitude headache and acute mountain sickness. Neurología, 2014; 29, 533−40.
[34] Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol, 2009; 296, R1473−95. doi:  10.1152/ajpregu.91008.2008
[35] Hoiland RL, Howe CA, Coombs GB, et al. Ventilatory and cerebrovascular regulation and integration at high-altitude. Clin Auton Res, 2018; 28, 423−35. doi:  10.1007/s10286-018-0522-2
[36] Hoiland RL, Bain AR, Rieger MG, et al. Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol, 2016; 310, R398−413. doi:  10.1152/ajpregu.00270.2015
[37] Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci, 2004; 5, 347−60. doi:  10.1038/nrn1387
[38] Cochand NJ, Wild M, Brugniaux JV, et al. Sea-level assessment of dynamic cerebral autoregulation predicts susceptibility to acute mountain sickness at high altitude. Stroke, 2011; 42, 3628−30. doi:  10.1161/STROKEAHA.111.621714
[39] Liman TG, Siebert E, Endres M. Posterior reversible encephalopathy syndrome. Curr Opin Neurol, 2019; 32, 25−35. doi:  10.1097/WCO.0000000000000640
[40] Ainslie PN, Lucas SJE, Fan JL, et al. Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans. J Appl Physiol (1985), 2012; 113, 1058−67. doi:  10.1152/japplphysiol.00463.2012
[41] Lundby C, Calbet J, van Hall G, et al. Sustained sympathetic activity in altitude acclimatizing lowlanders and high-altitude natives. Scand J Med Sci Sports, 2018; 28, 854−61. doi:  10.1111/sms.12976
[42] Hao GS, Fan QL, Hu QZ, et al. Research progress on the mechanism of cerebral blood flow regulation in hypoxia environment at plateau. Bioengineered, 2022; 13, 6353−8. doi:  10.1080/21655979.2021.2024950
[43] Vass Z, Steyger PS, Hordichok AJ, et al. Capsaicin stimulation of the cochlea and electric stimulation of the trigeminal ganglion mediate vascular permeability in cochlear and vertebro-basilar arteries: a potential cause of inner ear dysfunction in headache. Neuroscience, 2001; 103, 189−201. doi:  10.1016/S0306-4522(00)00521-2
[44] Mehnert J, May A. Functional and structural alterations in the migraine cerebellum. J Cereb Blood Flow Metab, 2019; 39, 730−9. doi:  10.1177/0271678X17722109
[45] Ruscheweyh R, Kühnel M, Filippopulos F, et al. Altered experimental pain perception after cerebellar infarction. Pain, 2014; 155, 1303−12. doi:  10.1016/j.pain.2014.04.006
[46] Hansen JM, Schankin CJ. Cerebral hemodynamics in the different phases of migraine and cluster headache. J Cereb Blood Flow Metab, 2019; 39, 595−609. doi:  10.1177/0271678X17729783
[47] Sprenger T, Ruether KV, Boecker H, et al. Altered metabolism in frontal brain circuits in cluster headache. Cephalalgia, 2007; 27, 1033−42. doi:  10.1111/j.1468-2982.2007.01386.x
[48] Frederiksen SD, Haanes KA, Warfvinge K, et al. Perivascular neurotransmitters: Regulation of cerebral blood flow and role in primary headaches. J Cereb Blood Flow Metab, 2019; 39, 610−32. doi:  10.1177/0271678X17747188
[49] Olesen J, Burstein R, Ashina M, et al. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol, 2009; 8, 679−90. doi:  10.1016/S1474-4422(09)70090-0
[50] Bao HH, He X, Wang FF, et al. Study of brain structure and function in chronic mountain sickness based on fMRI. Front Neurol, 2022; 12, 763835. doi:  10.3389/fneur.2021.763835
[51] Wager TD, Waugh CE, Lindquist M, et al. Brain mediators of cardiovascular responses to social threat: part I: Reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity. NeuroImage, 2009; 47, 821−35. doi:  10.1016/j.neuroimage.2009.05.043
[52] Davenport PW, Vovk A. Cortical and subcortical central neural pathways in respiratory sensations. Respir Physiol Neurobiol, 2009; 167, 72−86. doi:  10.1016/j.resp.2008.10.001
[53] Peters J, Dauvermann M, Mette C, et al. Voxel-based morphometry reveals an association between aerobic capacity and grey matter density in the right anterior insula. Neuroscience, 2009; 163, 1102−8. doi:  10.1016/j.neuroscience.2009.07.030
[54] von Leupoldt A, Dahme B. Cortical substrates for the perception of dyspnea. Chest, 2005; 128, 345−54. doi:  10.1378/chest.128.1.345
[55] Paulson OB, Hasselbalch SG, Rostrup E, et al. Cerebral blood flow response to functional activation. J Cereb Blood Flow Metab, 2010; 30, 2−14. doi:  10.1038/jcbfm.2009.188
[56] Lucas SJE, Burgess KR, Thomas KN, et al. Alterations in cerebral blood flow and cerebrovascular reactivity during 14 days at 5050 m. J Physiol, 2011; 589, 741−53. doi:  10.1113/jphysiol.2010.192534
[57] Jansen GFA, Krins A, Basnyat B. Cerebral vasomotor reactivity at high altitude in humans. J Appl Physiol (1985), 1999; 86, 681−6. doi:  10.1152/jappl.1999.86.2.681
[58] Binks AP, Cunningham VJ, Adams L, et al. Gray matter blood flow change is unevenly distributed during moderate isocapnic hypoxia in humans. J Appl Physiol (1985), 2008; 104, 212−7. doi:  10.1152/japplphysiol.00069.2007
[59] Liu WJ, Lou X, Ma L. Use of 3D pseudo-continuous arterial spin labeling to characterize sex and age differences in cerebral blood flow. Neuroradiology, 2016; 58, 943−8. doi:  10.1007/s00234-016-1713-y
[60] Alizadeh R, Ziaee V, Aghsaeifard Z, et al. Characteristics of headache at altitude among trekkers; a comparison between acute mountain sickness and non-acute mountain sickness headache. Asian J Sports Med, 2012; 3, 126−30.
[61] Silber E, Sonnenberg P, Collier DJ, et al. Clinical features of headache at altitude: a prospective study. Neurology, 2003; 60, 1167−71. doi:  10.1212/01.WNL.0000055876.26737.B9