[1] Fukunaga H, Kaminaga K, Sato T, et al. Application of an Ex Vivo Tissue Model to Investigate Radiobiological Effects on Spermatogenesis. Radiat Res, 2018; 189, 661−7. doi:  10.1667/RR14957.1
[2] Jahnukainen K, Ehmcke J, Hou M, et al. Testicular function and fertility preservation in male cancer patients. Best Pract Res Clin Endocrinol Metab, 2011; 25, 287−302. doi:  10.1016/j.beem.2010.09.007
[3] Lambrot R, Coffigny H, Pairault C, et al. High radiosensitivity of germ cells in human male fetus. J Clin Endocrinol Metab, 2007; 92, 2632−9. doi:  10.1210/jc.2006-2652
[4] Gong EJ, Shin IS, Son TG, et al. Low-dose-rate radiation exposure leads to testicular damage with decreases in DNMT1 and HDAC1 in the murine testis. J Radiat Res, 2014; 55, 54−60. doi:  10.1093/jrr/rrt090
[5] Dohle GR. Male infertility in cancer patients: Review of the literature. Int J Urol, 2010; 17, 327−31. doi:  10.1111/j.1442-2042.2010.02484.x
[6] Li W, Zeng Y, Zhao J, et al. Upregulation and nuclear translocation of testicular ghrelin protects differentiating spermatogonia from ionizing radiation injury. Cell Death Dis, 2014; 5, e1248. doi:  10.1038/cddis.2014.223
[7] Zhou X, Liao WJ, Liao JM. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol, 2015; 7, 92−104. doi:  10.1093/jmcb/mjv014
[8] Wang W, Nag S, Zhang X, et al. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev, 2015; 35, 225−85. doi:  10.1002/med.21327
[9] Holmberg Olausson K, Nistér M, Lindström MS. p53 -Dependent and -Independent Nucleolar Stress Responses. Cells, 2012; 1, 774−98. doi:  10.3390/cells1040774
[10] Russo A, Pagliara V, Albano F, et al. Regulatory role of rpL3 in cell response to nucleolar stress induced by Act D in tumor cells lacking functional p53. Cell Cycle, 2016; 15, 41−51. doi:  10.1080/15384101.2015.1120926
[11] Kardos GR, Dai MS, Robertson GP. Growth inhibitory effects of large subunit ribosomal proteins in melanoma. Pigment Cell Melanoma Res, 2014; 27, 801−12. doi:  10.1111/pcmr.12259
[12] Meng X, Tackmann NR, Liu S, et al. RPL23 Links Oncogenic RAS Signaling to p53-Mediated Tumor Suppression. Cancer Res, 2016; 76, 5030−9. doi:  10.1158/0008-5472.CAN-15-3420
[13] Wei F, Ding L, Wei Z, et al. Ribosomal protein L34 promotes the proliferation, invasion and metastasis of pancreatic cancer cells. Oncotarget, 2016; 7, 85259−72. doi:  10.18632/oncotarget.13269
[14] Zhou X, Hao Q, Liao J. Ribosomal protein S14 unties the MDM2-p53 loop upon ribosomal stress. Oncogene, 2013; 32, 388−96. doi:  10.1038/onc.2012.63
[15] Golomb L, Volarevic S, Oren M. p53 and ribosome biogenesis stress: the essentials. FEBS Lett, 2014; 588, 2571−9. doi:  10.1016/j.febslet.2014.04.014
[16] Kim TH, Leslie P, Zhang Y. Ribosomal proteins as unrevealed caretakers for cellular stress and genomic instability. Oncotarget, 2014; 5, 860−71. doi:  10.18632/oncotarget.1784
[17] Li H, Zhang H, Huang G, et al. Heavy ion radiation-induced DNA damage mediates apoptosis via the Rpl27a-Rpl5-MDM2-p53/E2F1 signaling pathway in mouse spermatogonia. Ecotoxicol Environ Saf, 2020; 201, 110831. doi:  10.1016/j.ecoenv.2020.110831
[18] Sun B, Hou YL, Hou WR, et al. cDNA cloning, overexpression, purification and pharmacologic evaluation for anticancer activity of ribosomal protein L23A gene (RPL23A) from the Giant Panda. Int J Mol Sci, 2012; 13, 2133−47. doi:  10.3390/ijms13022133
[19] He Y, Zhang Y, Li H, et al. Comparative Profiling of MicroRNAs Reveals the Underlying Toxicological Mechanism in Mice Testis Following Carbon Ion Radiation. Dose Response, 2018; 16, 1559325818778633.
[20] Li H, Zhang W, Zhang H, et al. Mitochondrial proteomics reveals the mechanism of spermatogenic cells apoptosis induced by carbon ion radiation in zebrafish. J Cell Physiol, 2019; 234, 22439−49. doi:  10.1002/jcp.28808
[21] Jiang X, Du Y, Meng X, et al. Low-Dose Radiation Enhanced Inhibition of Breast Tumor Xenograft and Reduced Myocardial Injury Induced by Doxorubicin. Dose Response, 2018; 16, 1559325818813061.
[22] He N, Xiao C, Sun Y, et al. Radiation Responses of Human Mesenchymal Stem Cells Derived From Different Sources. Dose Response, 2019; 17, 1559325819893210.
[23] Chen J, Bian R, Li J, et al. Chronic exposure to microcystin-LR reduces thyroid hormone levels by activating p38/MAPK and MEK/ERK signal pathway. Ecotoxicol Environ Saf, 2019; 173, 142−8. doi:  10.1016/j.ecoenv.2019.02.024
[24] Zhang Y, Su YL, Li LS, et al. Mouse dead end 1-β interacts with c-Jun and stimulates activator protein 1 transactivation. Mol Med Rep, 2015; 11, 1701−7. doi:  10.3892/mmr.2014.2950
[25] Hung JH, Chen CY, Omar HA, et al. Reactive oxygen species mediate Terbufos-induced apoptosis in mouse testicular cell lines via the modulation of cell cycle and pro-apoptotic proteins. Environ Toxicol, 2016; 31, 1888−98. doi:  10.1002/tox.22190
[26] Chen R, Cui Y, Zhang X, et al. Chlorpyrifos Induction of Testicular-Cell Apoptosis through Generation of Reactive Oxygen Species and Phosphorylation of AMPK. J Agric Food Chem, 2018; 66, 12455−70. doi:  10.1021/acs.jafc.8b03407
[27] Hoskin PJ, Price P, Easton D, et al. A prospective randomised trial of 4 Gy or 8 Gy single doses in the treatment of metastatic bone pain. Radiotherapy & Oncology, 1992; 23, 74−8.
[28] Kawamura K, Qi F, Meng Q, et al. Nucleolar protein nucleolin functions in replication stress-induced DNA damage responses. J Radiat Res, 2019; 60, 281−8. doi:  10.1093/jrr/rry114
[29] Manku G, Culty M. Mammalian gonocyte and spermatogonia differentiation: recent advances and remaining challenges. Reproduction, 2015; 149, R139−R157. doi:  10.1530/REP-14-0431
[30] Hasegawa M, Zhang Y, Niibe H, et al. Resistance of differentiating spermatogonia to radiation-induced apoptosis and loss in p53-deficient mice. Radiat Res, 1998; 149, 263−2670. doi:  10.2307/3579959
[31] Liu G, Gong P, Bernstein LR, et al. Apoptotic cell death induced by low-dose radiation in male germ cells: hormesis and adaptation. Crit Rev Toxicol, 2007; 37, 587−605. doi:  10.1080/10408440701493061
[32] Jaako P, Ugale A, Wahlestedt M, et al. Induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway delays the initiation but fails to eradicate established murine acute myeloid leukemia. Leukemia, 2017; 31, 213−21. doi:  10.1038/leu.2016.159
[33] Liu Y, Deisenroth C, Zhang Y. RP-MDM2-p53 Pathway: Linking Ribosomal Biogenesis and Tumor Surveillance. Trends Cancer, 2016; 2, 191−204. doi:  10.1016/j.trecan.2016.03.002
[34] Cho J, Park J, Shin SC, et al. Ribosomal protein S2 interplays with MDM2 to induce p53. Biochem Biophys Res Commun, 2020; 523, 542−7. doi:  10.1016/j.bbrc.2020.01.038
[35] El Motiam A, Vidal S, de la Cruz-Herrera CF, et al. Collado M, Rivas C. Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function. FASEB J, 2019; 33, 643−51. doi:  10.1096/fj.201800341RR
[36] Fumagalli S, Ivanenkov VV, Teng T, et al. Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes Dev, 2012; 26, 1028−40. doi:  10.1101/gad.189951.112
[37] Donati G, Peddigari S, Mercer CA, et al. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep, 2013; 4, 87−98. doi:  10.1016/j.celrep.2013.05.045
[38] Wang J, Zhang ZQ, Li FQ, et al. Triptolide interrupts rRNA synthesis and induces the RPL23-MDM2-p53 pathway to repress lung cancer cells. Oncol Rep, 2020; 43, 1863−74.