[1] |
World Health Organization. Global tuberculosis report 2023. Geneva: WHO, 2023. |
[2] |
Drain PK, Bajema KL, Dowdy D, et al. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection. Clin Microbiol Rev, 2018; 31, e00021−18. |
[3] |
Weeratunga P, Moller DR, Ho LP. Immune mechanisms of granuloma formation in sarcoidosis and tuberculosis. J Clin Invest, 2024; 134, e175264. doi: 10.1172/JCI175264 |
[4] |
Rubin EJ. The granuloma in tuberculosis--friend or foe?. N Engl J Med, 2009; 360, 2471-3. |
[5] |
Ouimet M, Koster S, Sakowski E, et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol, 2016; 17, 677−86. |
[6] |
Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol, 2012; 12, 352−66. doi: 10.1038/nri3211 |
[7] |
Genoula M, Franco JLM, Dupont M, et al. Formation of foamy macrophages by tuberculous pleural effusions is triggered by the interleukin-10/signal transducer and activator of transcription 3 axis through ACAT upregulation. Front Immunol, 2018; 9, 459. doi: 10.3389/fimmu.2018.00459 |
[8] |
Agarwal P, Combes TW, Shojaee-Moradie F, et al. Foam cells control Mycobacterium tuberculosis infection. Front Microbiol, 2020; 11, 1394. doi: 10.3389/fmicb.2020.01394 |
[9] |
Johansen MD, Kasparian JA, Hortle E, et al. Mycobacterium marinum infection drives foam cell differentiation in zebrafish infection models. Dev Comp Immunol, 2018; 88, 169−72. doi: 10.1016/j.dci.2018.07.022 |
[10] |
Zhou S, Zhang D, Li D, et al. Pathogenic mycobacterium upregulates cholesterol 25-hydroxylase to promote granuloma development via foam cell formation. iScience, 2024; 27, 109204. doi: 10.1016/j.isci.2024.109204 |
[11] |
Russell DG, Cardona PJ, Kim MJ, et al. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol, 2009; 10, 943−8. doi: 10.1038/ni.1781 |
[12] |
Russell DG. Who puts the tubercle in tuberculosis?. Nat Rev Microbiol, 2007; 5, 39−47. doi: 10.1038/nrmicro1538 |
[13] |
Genoula M, Franco JLM, Maio M, et al. Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation. PLoS Pathog, 2020; 16, e1008929. doi: 10.1371/journal.ppat.1008929 |
[14] |
Sellick CA, Hansen R, Stephens GM, et al. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat Protoc, 2011; 6, 1241−9. doi: 10.1038/nprot.2011.366 |
[15] |
Yuan M, Breitkopf SB, Yang XM, et al. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc, 2012; 7, 872−81. doi: 10.1038/nprot.2012.024 |
[16] |
Montero-Vega MT, Matilla J, Bazán E, et al. Fluvastatin converts human macrophages into foam cells with increased inflammatory response to inactivated Mycobacterium tuberculosis H37Ra. Cells, 2024; 13, 536. doi: 10.3390/cells13060536 |
[17] |
Daniel J, Maamar H, Deb C, et al. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog, 2011; 7, e1002093. doi: 10.1371/journal.ppat.1002093 |
[18] |
Vermeulen I, Baird M, Al-Dulayymi J, et al. Mycolates of Mycobacterium tuberculosis modulate the flow of cholesterol for bacillary proliferation in murine macrophages. J Lipid Res, 2017; 58, 709−18. doi: 10.1194/jlr.M073171 |
[19] |
Vrieling F, Wilson L, Rensen PCN, et al. Oxidized low-density lipoprotein (oxLDL) supports Mycobacterium tuberculosis survival in macrophages by inducing lysosomal dysfunction. PLoS Pathog, 2019; 15, e1007724. doi: 10.1371/journal.ppat.1007724 |
[20] |
Marakalala MJ, Raju RM, Sharma K, et al. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat Med, 2016; 22, 531−8. doi: 10.1038/nm.4073 |
[21] |
Chai QY, Lu Z, Liu CH. Host defense mechanisms against Mycobacterium tuberculosis. Cell Mol Life Sci, 2020; 77, 1859−78. doi: 10.1007/s00018-019-03353-5 |
[22] |
Chen DK, Wang JJ, Cao J, et al. cAMP-PKA signaling pathway and anxiety: where do we go next?. Cell Signal, 2024; 122, 111311. doi: 10.1016/j.cellsig.2024.111311 |
[23] |
Kalamidas SA, Kuehnel MP, Peyron P, et al. cAMP synthesis and degradation by phagosomes regulate actin assembly and fusion events: consequences for mycobacteria. J Cell Sci, 2006; 119, 3686−94. doi: 10.1242/jcs.03091 |
[24] |
Lee HJ, Ko HJ, Song DK, et al. Lysophosphatidylcholine promotes phagosome maturation and regulates inflammatory mediator production through the protein kinase a-phosphatidylinositol 3 kinase-p38 mitogen-activated protein kinase signaling pathway during Mycobacterium tuberculosis infection in mouse macrophages. Front Immunol, 2018; 9, 920. doi: 10.3389/fimmu.2018.00920 |
[25] |
Wager CML, Bonifacio JR, Simper J, et al. Activation of transcription factor CREB in human macrophages by Mycobacterium tuberculosis promotes bacterial survival, reduces NF-kB nuclear transit and limits phagolysosome fusion by reduced necroptotic signaling. PLoS Pathog, 2023; 19, e1011297. doi: 10.1371/journal.ppat.1011297 |
[26] |
McDonough KA, Rodriguez A. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol, 2011; 10, 27−38. |
[27] |
Chubukov V, Gerosa L, Kochanowski K, et al. Coordination of microbial metabolism. Nat Rev Microbiol, 2014; 12, 327−40. doi: 10.1038/nrmicro3238 |
[28] |
Molina-Quiroz RC, Silva-Valenzuela C, Brewster J, et al. Cyclic AMP regulates bacterial persistence through repression of the oxidative stress response and SOS-dependent DNA repair in uropathogenic Escherichia coli. mBio, 2018; 9, e02144−17. |
[29] |
Wong AI. , Beites T, Planck KA, et al. Schnappinger D, et al. Cyclic AMP is a critical mediator of intrinsic drug resistance and fatty acid metabolism in M. tuberculosis. Elife, 2023; 12, e81177. doi: 10.7554/eLife.81177 |
[30] |
Wilburn KM, Montague CR, Qin B, et al. Pharmacological and genetic activation of cAMP synthesis disrupts cholesterol utilization in Mycobacterium tuberculosis. PLoS Pathog, 2022; 18, e1009862. doi: 10.1371/journal.ppat.1009862 |