[1] |
Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology, 2021; 128, 1580−91. doi: 10.1016/j.ophtha.2021.04.027 |
[2] |
Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract, 2022; 183, 109119. doi: 10.1016/j.diabres.2021.109119 |
[3] |
Chen XD, Gardner TW. A critical review: psychophysical assessments of diabetic retinopathy. Surv Ophthalmol, 2021; 66, 213−30. doi: 10.1016/j.survophthal.2020.08.003 |
[4] |
Hosseini SM, Maracy MR, Amini M, et al. A risk score development for diabetic retinopathy screening in Isfahan-Iran. J Res Med Sci, 2009; 14, 105−10. |
[5] |
Aspelund T, Þórisdóttir Ó, Ólafsdottir E, et al. Individual risk assessment and information technology to optimise screening frequency for diabetic retinopathy. Diabetologia, 2011; 54, 2525−32. doi: 10.1007/s00125-011-2257-7 |
[6] |
Verma L, Srivastava S, Negi PC. A hybrid data mining model to predict coronary artery disease cases using non-invasive clinical data. J Med Syst, 2016; 40, 178. doi: 10.1007/s10916-016-0536-z |
[7] |
Oh E, Yoo TK, Park EC. Diabetic retinopathy risk prediction for fundus examination using sparse learning: a cross-sectional study. BMC Med Inform Decis Mak, 2013; 13, 106. doi: 10.1186/1472-6947-13-106 |
[8] |
Li WY, Song YN, Chen K, et al. Predictive model and risk analysis for diabetic retinopathy using machine learning: a retrospective cohort study in China. BMJ Open, 2021; 11, e050989. doi: 10.1136/bmjopen-2021-050989 |
[9] |
Kaur N, Vanita V. Association of aldose reductase gene (AKR1B1) polymorphism with diabetic retinopathy. Diabetes Res Clin Pract, 2016; 121, 41−8. doi: 10.1016/j.diabres.2016.08.019 |
[10] |
Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol, 2020; 16, 377−90. doi: 10.1038/s41581-020-0278-5 |
[11] |
Shtir C, Aldahmesh MA, Al-Dahmash S, et al. Exome-based case-control association study using extreme phenotype design reveals novel candidates with protective effect in diabetic retinopathy. Hum Genet, 2016; 135, 193−200. doi: 10.1007/s00439-015-1624-8 |
[12] |
Hao SF, Bai JY, Liu HM, et al. Comparison of machine learning tools for the prediction of AMD based on genetic, age, and diabetes-related variables in the Chinese population. Regen Ther, 2020; 15, 180−6. doi: 10.1016/j.reth.2020.09.001 |
[13] |
Yan Q, Jiang YL, Huang H, et al. Genome-wide association studies-based machine learning for prediction of age-related macular degeneration risk. Transl Vis Sci Technol, 2021; 10, 29. |
[14] |
Li YY, Yang XF, Gu H, et al. The Beijing Desheng Diabetic Eye Study: rationale, design, methodology and baseline data. Int J Ophthalmol, 2018; 11, 108−16. |
[15] |
Albert TJ, Molla MN, Muzny DM, et al. Direct selection of human genomic loci by microarray hybridization. Nat Methods, 2007; 4, 903−5. doi: 10.1038/nmeth1111 |
[16] |
Hampton BM, Schwartz SG, Brantley MA Jr, et al. Update on genetics and diabetic retinopathy. Clin Ophthalmol, 2015; 9, 2175−93. |
[17] |
Cho H, Sobrin L. Genetics of diabetic retinopathy. Curr Diab Rep, 2014; 14, 515. doi: 10.1007/s11892-014-0515-z |
[18] |
Meng WH, Shah KP, Pollack S, et al. A genome-wide association study suggests new evidence for an association of the NADPH Oxidase 4 (NOX4) gene with severe diabetic retinopathy in type 2 diabetes. Acta Ophthalmol, 2018; 96, e811−9. |
[19] |
Looker HC, Nelson RG, Chew E, et al. Genome-wide linkage analyses to identify loci for diabetic retinopathy. Diabetes, 2007; 56, 1160−6. doi: 10.2337/db06-1299 |
[20] |
Hietala K, Forsblom C, Summanen P, et al. Heritability of proliferative diabetic retinopathy. Diabetes, 2008; 57, 2176−80. doi: 10.2337/db07-1495 |
[21] |
Wang YH, Wang JQ, Wang QC, et al. Endophilin B2 promotes inner mitochondrial membrane degradation by forming heterodimers with Endophilin B1 during mitophagy. Sci Rep, 2016; 6, 25153. doi: 10.1038/srep25153 |
[22] |
Elder DA, D'Alessio DA, Eyal O, et al. Abnormalities in glucose tolerance are common in children with fanconi anemia and associated with impaired insulin secretion. Pediatr Blood Cancer, 2008; 51, 256−60. doi: 10.1002/pbc.21589 |
[23] |
Serfass JM, Takahashi Y, Zhou ZX, et al. Endophilin B2 facilitates endosome maturation in response to growth factor stimulation, autophagy induction, and influenza A virus infection. J Biol Chem, 2017; 292, 10097−111. doi: 10.1074/jbc.M117.792747 |
[24] |
Du YP, Miller CM, Kern TS. Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radical Biol Med, 2003; 35, 1491−9. doi: 10.1016/j.freeradbiomed.2003.08.018 |
[25] |
Liu Y, Takahashi Y, Desai N, et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci Rep, 2016; 6, 20453. doi: 10.1038/srep20453 |
[26] |
MacKay C, Déclais AC, Lundin C, et al. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell, 2010; 142, 65−76. doi: 10.1016/j.cell.2010.06.021 |
[27] |
Li J, Sipple J, Maynard S, et al. Fanconi anemia links reactive oxygen species to insulin resistance and obesity. Antioxid Redox Signal, 2012; 17, 1083−98. doi: 10.1089/ars.2011.4417 |
[28] |
Li JN, Sejas DP, Zhang XL, et al. TNF-α induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells. J Clin Invest, 2007; 117, 3283−95. doi: 10.1172/JCI31772 |
[29] |
Pang QS, Andreassen PR. Fanconi anemia proteins and endogenous stresses. Mutat Res/Fundam Mol Mech Mutagen, 2009; 668, 42−53. doi: 10.1016/j.mrfmmm.2009.03.013 |
[30] |
Zheng DD, Liu J, Piao H, et al. ROS-triggered endothelial cell death mechanisms: focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol, 2022; 13, 1039241. doi: 10.3389/fimmu.2022.1039241 |
[31] |
Tibshirani R. The lasso method for variable selection in the cox model. Stat Med, 1997; 16, 385−95. doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 |
[32] |
Spicer J, Sanborn AN. What does the mind learn? A comparison of human and machine learning representations. Curr Opin Neurobiol, 2019; 55, 97−102. doi: 10.1016/j.conb.2019.02.004 |
[33] |
Klein R, Klein BE, Moss SE, et al. The Wisconsin epidemiologic study of diabetic retinopathy: XVII. The 14-year incidence and progression of diabetic retinopathy and associated risk factors in type 1 diabetes. Ophthalmology, 1998; 105, 1801−15. doi: 10.1016/S0161-6420(98)91020-X |
[34] |
Lachin JM, Genuth S, Nathan DM, et al. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial—revisited. Diabetes, 2008; 57, 995−1001. doi: 10.2337/db07-1618 |