[1] |
Menorca RMG, Fussell TS, Elfar JC. Nerve physiology: mechanisms of injury and recovery. Hand Clin, 2013; 29, 317−30. doi: 10.1016/j.hcl.2013.04.002 |
[2] |
Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysiol, 2008; 119, 1951−65. doi: 10.1016/j.clinph.2008.03.018 |
[3] |
Caillaud M, Richard L, Vallat JM, et al. Peripheral nerve regeneration and intraneural revascularization. Neural Regen Res, 2019; 14, 24−33. doi: 10.4103/1673-5374.243699 |
[4] |
Paskal AM, Paskal W, Pietruski P, et al. Neuroregenerative effects of polyethylene glycol and FK-506 in a rat model of sciatic nerve injury. J Plast Reconstr Aesthet Surg, 2020; 73, 222−30. doi: 10.1016/j.bjps.2019.10.011 |
[5] |
Gigo-Benato D, Russo TL, Tanaka EH, et al. Effects of 660 and 780 nm low-level laser therapy on neuromuscular recovery after crush injury in rat sciatic nerve. Lasers Surg Med, 2010; 42, 833−42. doi: 10.1002/lsm.20978 |
[6] |
Gudemez E, Ozer K, Cunningham B, et al. Dehydroepiandrosterone as an enhancer of functional recovery following crush injury to rat sciatic nerve. Microsurgery, 2002; 22, 234−41. doi: 10.1002/micr.10039 |
[7] |
Byun SH, Ahn KM. Functional and electron-microscopic changes after differential traction injury in the sciatic nerve of a rat. Maxillofac Plast Reconstr Surg, 2021; 43, 12. doi: 10.1186/s40902-021-00297-4 |
[8] |
Yeoh S, Warner WS, Eli I, et al. Rapid-stretch injury to peripheral nerves: comparison of injury models. J Neurosurg, 2020; 135, 893−903. |
[9] |
Li H, Jia JP, Xu M, et al. Changes in the blood-nerve barrier after sciatic nerve cold injury: indications supporting early treatment. Neural Regen Res, 2015; 10, 419−24. doi: 10.4103/1673-5374.153690 |
[10] |
Nishimoto S, Tanaka H, Okamoto M, et al. Methylcobalamin promotes the differentiation of Schwann cells and remyelination in lysophosphatidylcholine-induced demyelination of the rat sciatic nerve. Front Cell Neurosci, 2015; 9, 298. |
[11] |
Dun XP, Parkinson DB. Transection and crush models of nerve injury to measure repair and remyelination in peripheral nerve. Methods Mol Biol, 2018; 251−62. doi: 10.1007/978-1-4939-7862-5_20 |
[12] |
Qu SW, Ma N, Wang WX, et al. Construction and effect evaluation of different sciatic nerve injury models in rats. Transl Neurosci, 2022; 13, 38−51. doi: 10.1515/tnsci-2022-0214 |
[13] |
Deumens R, Jaken RJP, Marcus MAE, et al. The CatWalk gait analysis in assessment of both dynamic and static gait changes after adult rat sciatic nerve resection. J Neurosci Methods, 2007; 164, 120−30. doi: 10.1016/j.jneumeth.2007.04.009 |
[14] |
Luis-Delgado OE, Barrot M, Rodeau JL, et al. Calibrated forceps: a sensitive and reliable tool for pain and analgesia studies. J Pain, 2006; 7, 32−9. doi: 10.1016/j.jpain.2005.07.011 |
[15] |
Chen LE, Seaber AV, Urbaniak JR. The influence of magnitude and duration of crush load on functional recovery of the peripheral nerve. J Reconstr Microsurg, 1993; 9, 299−306. doi: 10.1055/s-2007-1006671 |
[16] |
Kingery WS, Lu JD, Roffers JA, et al. The resolution of neuropathic hyperalgesia following motor and sensory functional recovery in sciatic axonotmetic mononeuropathies. Pain, 1994; 58, 157−68. doi: 10.1016/0304-3959(94)90196-1 |
[17] |
Savastano LE, Laurito SR, Fitt MR, et al. Sciatic nerve injury: a simple and subtle model for investigating many aspects of nervous system damage and recovery. J Neurosci Methods, 2014; 227, 166−80. doi: 10.1016/j.jneumeth.2014.01.020 |
[18] |
Beer GM, Steurer J, Meyer VE. Standardizing nerve crushes with a non-serrated clamp. J Reconstr Microsurg, 2001; 17, 531−4. doi: 10.1055/s-2001-17755 |
[19] |
Karsidag S, Akcal A, Sahin S, et al. Neurophysiological and morphological responses to treatment with acetyl-L-carnitine in a sciatic nerve injury model: preliminary data. J Hand Surg Eur Vol, 2012; 37, 529−36. doi: 10.1177/1753193411426969 |
[20] |
Moimas S, Novati F, Ronchi G, et al. Effect of vascular endothelial growth factor gene therapy on post-traumatic peripheral nerve regeneration and denervation-related muscle atrophy. Gene Ther, 2013; 20, 1014−21. doi: 10.1038/gt.2013.26 |
[21] |
Blom CL, Mårtensson LB, Dahlin LB. Nerve injury-induced c-Jun activation in Schwann cells is JNK independent. Biomed Res Int, 2014; 2014, 392971. doi: 10.1155/2014/392971 |
[22] |
Gordon T, Borschel GH. The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries. Exp Neurol, 2017; 287, 331−47. doi: 10.1016/j.expneurol.2016.01.014 |
[23] |
Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain, 1951; 74, 491−516. doi: 10.1093/brain/74.4.491 |
[24] |
Podhajsky RJ, Myers RR. The vascular response to nerve crush: Relationship to Wallerian degeneration and regeneration. Brain Res, 1993; 623, 117−23. doi: 10.1016/0006-8993(93)90018-I |
[25] |
Merolli A, Rocchi L, Catalano F, et al. In vivo regeneration of rat sciatic nerve in a double-halved stitch-less guide: a pilot-study. Microsurgery, 2009; 29, 310−18. doi: 10.1002/micr.20622 |
[26] |
Goedee HS, Brekelmans GJF, van Asseldonk JTH, et al. High resolution sonography in the evaluation of the peripheral nervous system in polyneuropathy-a review of the literature. Eur J Neurol, 2013; 20, 1342−51. doi: 10.1111/ene.12182 |
[27] |
Nukada H. Post-traumatic endoneurial neovascularization and nerve regeneration: a morphometric study. Brain Res, 1988; 449, 89−96. doi: 10.1016/0006-8993(88)91027-X |
[28] |
Parrinello S, Napoli I, Ribeiro S, et al. EphB signaling directs peripheral nerve regeneration through Sox2-dependent schwann cell sorting. Cell, 2010; 143, 145−55. doi: 10.1016/j.cell.2010.08.039 |
[29] |
Cattin AL, Burden JJ, Van Emmenis L, et al. Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves. Cell, 2015; 162, 1127−39. doi: 10.1016/j.cell.2015.07.021 |
[30] |
Stoll G, Griffin JW, Li CY, et al. Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J Neurocytol, 1989; 18, 671. doi: 10.1007/BF01187086 |
[31] |
Waller A. Experiments on the section of the glosso-pharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Edinb Med Surg J, 1851; 76, 369−76. doi: 10.1098/rstl.1850.0021 |
[32] |
Lunn ER, Perry VH, Brown MC, et al. Absence of wallerian degeneration does not hinder regeneration in peripheral nerve. Eur J Neurosci, 1989; 1, 27−33. doi: 10.1111/j.1460-9568.1989.tb00771.x |
[33] |
Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation, 2011; 8, 110. doi: 10.1186/1742-2094-8-110 |
[34] |
Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation, 2011; 8, 109. doi: 10.1186/1742-2094-8-109 |
[35] |
Taskinen HS, Röyttä M. The dynamics of macrophage recruitment after nerve transection. Acta Neuropathol, 1997; 93, 252−59. doi: 10.1007/s004010050611 |
[36] |
Stoll G, Muller HW. Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol, 1999; 9, 313−25. doi: 10.1111/j.1750-3639.1999.tb00229.x |
[37] |
Preston DC, Shapiro BE. Approach to nerve conduction studies and electromyography. In: Preston DC, Shapiro BE. Electromyography and Neuromuscular Disorders. 3rd ed. Elsevier. 2013. |
[38] |
Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus, 2004; 16, E1. doi: 10.3171/foc.2004.16.5.2 |
[39] |
Vrinten DH, Hamers FF. 'CatWalk' automated quantitative gait analysis as a novel method to assess mechanical allodynia in the rat; a comparison with von Frey testing. Pain, 2003; 102, 203−09. doi: 10.1016/s0304-3959(02)00382-2 |
[40] |
Wang BB, Zhang SD, Feng J, et al. An experimental study on the optimal timing for the repair of incomplete facial paralysis by hypoglossal-facial 'Side'-to-side neurorrhaphy in rats. Biomed Environ Sci, 2018; 31, 413−24. doi: 10.3967/bes2018.055 |
[41] |
Leila OZ, Firouzi M, Nabian MH, et al. Comparison and evaluation of current animal models for perineural scar formation in rat. Iran J Basic Med Sci, 2013; 16, 886−90. |
[42] |
Rivlin M, Miller A, Tulipan J, et al. Patterns of production of collagen-rich deposits in peripheral nerves in response to injury: a pilot study in a rabbit model. Brain Behav, 2017; 7, e00659. doi: 10.1002/brb3.659 |
[43] |
Liu XX, Liu Y, Jin HY, et al. Reactive fibroblasts in response to optic nerve crush injury. Mol Neurobiol, 2021; 58, 1392−403. doi: 10.1007/s12035-020-02199-4 |
[44] |
Geraldo S, Gordon-Weeks PR. Cytoskeletal dynamics in growth-cone steering. J Cell Sci, 2009; 122, 3595−604. doi: 10.1242/jcs.042309 |
[45] |
Navarro X. Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: a critical overview. Eur J Neurosci, 2016; 43, 271−86. doi: 10.1111/ejn.13033 |
[46] |
Fornasari BE, Carta G, Gambarotta G, et al. Natural-based biomaterials for peripheral nerve injury repair. Front Bioeng Biotechnol, 2020; 8, 554257. doi: 10.3389/fbioe.2020.554257 |