[1] Bezirtzoglou C, Dekas K, Charvalos E. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe. Anaerobe, 2011; 17, 337−40. doi:  10.1016/j.anaerobe.2011.05.016
[2] Cao B, Bai CK, Wu KY, et al. Tracing the future of epidemics: Coincident niche distribution of host animals and disease incidence revealed climate-correlated risk shifts of main zoonotic diseases in China. Glob Chang Biol, 2023; 29, 3723−46. doi:  10.1111/gcb.16708
[3] Samuel GH, Adelman ZN, Myles KM. Temperature-dependent effects on the replication and transmission of arthropod-borne viruses in their insect hosts. Curr Opin Insect Sci, 2016; 16, 108−13. doi:  10.1016/j.cois.2016.06.005
[4] Cissé G. Food-borne and water-borne diseases under climate change in low- and middle-income countries: Further efforts needed for reducing environmental health exposure risks. Acta Trop, 2019; 194, 181−8. doi:  10.1016/j.actatropica.2019.03.012
[5] Hodges M, Belle JH, Carlton EJ, et al. Delays in reducing waterborne and water-related infectious diseases in China under climate change. Nat Clim Chang, 2014; 4, 1109−15. doi:  10.1038/nclimate2428
[6] Liu Q, Yuan J, Yan WX, et al. Association of natural flood disasters with infectious diseases in 168 countries and territories from 1990 to 2019: a worldwide observational study. Global Transi, 2023; 5, 149−59. doi:  10.1016/j.glt.2023.09.001
[7] Dal T, Ramli I, Garaizar J. Effect of climate change on nature and human health with a special focus on infectious diseases in the Mediterranean region. J Infect Dev Ctries, 2023; 17, 1501−10. doi:  10.3855/jidc.17995
[8] Tong MX, Hansen A, Hanson-Easey S, et al. Perceptions of malaria control and prevention in an era of climate change: a cross-sectional survey among CDC staff in China. Malar J, 2017; 16, 136. doi:  10.1186/s12936-017-1790-3
[9] Tong MX, Hansen A, Hanson-Easey S, et al. Perceptions of capacity for infectious disease control and prevention to meet the challenges of dengue fever in the face of climate change: a survey among CDC staff in Guangdong Province, China. Environ Res, 2016; 148, 295−302. doi:  10.1016/j.envres.2016.03.043
[10] Wei JN, Hansen A, Zhang Y, et al. The impact of climate change on infectious disease transmission: perceptions of CDC health professionals in Shanxi Province, China. PLoS One, 2014; 9, e109476. doi:  10.1371/journal.pone.0109476
[11] Yi LP, Xu X, Ge WX, et al. The impact of climate variability on infectious disease transmission in China: current knowledge and further directions. Environ Res, 2019; 173, 255−61. doi:  10.1016/j.envres.2019.03.043
[12] Eguiluz-Gracia I, Mathioudakis AG, Bartel S, et al. The need for clean air: the way air pollution and climate change affect allergic rhinitis and asthma. Allergy, 2020; 75, 2170−84. doi:  10.1111/all.14177
[13] Mahmud AS, Martinez PP, He JX, et al. The impact of climate change on vaccine-preventable diseases: insights from current research and new directions. Curr Environ Health Rep, 2020; 7, 384−91. doi:  10.1007/s40572-020-00293-2
[14] Li F, Zhou H, Huang DS, et al. Global research output and theme trends on climate change and infectious diseases: a Restrospective bibliometric and co-word biclustering investigation of papers indexed in PubMed (1999-2018). Int J Environ Res Public Health, 2020; 17, 5228. doi:  10.3390/ijerph17145228
[15] Ciota AT, Matacchiero AC, Kilpatrick AM, et al. The effect of temperature on life history traits of Culex mosquitoes. J Med Entomol, 2014; 51, 55−62. doi:  10.1603/ME13003
[16] Gizaw Z, Salubi E, Pietroniro A, et al. Impacts of climate change on water-related mosquito-borne diseases in temperate regions: a systematic review of literature and meta-analysis. Acta Trop, 2024; 258, 107324. doi:  10.1016/j.actatropica.2024.107324
[17] Liu ZD, Wang SZ, Zhang Y, et al. Effect of temperature and its interactions with relative humidity and rainfall on malaria in a temperate city Suzhou, China. Environ Sci Pollut Res, 2021; 28, 16830−42. doi:  10.1007/s11356-020-12138-4
[18] Liu Q, Wang YP, Deng J, et al. Association of temperature and precipitation with malaria incidence in 57 countries and territories from 2000 to 2019: A worldwide observational study. J Glob Health, 2024; 14, 04021. doi:  10.7189/jogh.14.04021
[19] Brower V. Vector-borne diseases and global warming: are both on an upward swing?. EMBO Rep, 2001; 2, 755−7. doi:  10.1093/embo-reports/kve193
[20] Aguiar M. The effect of global warming on vector-borne diseases: Comment on “Modeling the impact of global warming on vector-borne” infections by E. Massad et al. Phys Life Rev, 2011; 8, 202−3.
[21] Adepoju OA, Afinowi OA, Tauheed AM, et al. Multisectoral perspectives on global warming and vector-borne diseases: a focus on Southern Europe. Curr Trop Med Rep, 2023; 10, 47−70. doi:  10.1007/s40475-023-00283-y
[22] Carreto C, Gutiérrez-Romero R, Rodríguez T. Climate-driven mosquito-borne viral suitability index: measuring risk transmission of dengue, chikungunya and Zika in Mexico. Int J Health Geogr, 2022; 21, 15. doi:  10.1186/s12942-022-00317-0
[23] Pham NTT, Nguyen CT, Vu HH. Assessing and modelling vulnerability to dengue in the Mekong Delta of Vietnam by geospatial and time-series approaches. Environ Res, 2020; 186, 109545. doi:  10.1016/j.envres.2020.109545
[24] Kouadio IK, Aljunid S, Kamigaki T, et al. Infectious diseases following natural disasters: prevention and control measures. Expert Rev Anti Infect Ther, 2012; 10, 95−104. doi:  10.1586/eri.11.155
[25] Velu RM, Kwenda G, Bosomprah S, et al. Ecological niche modeling of Aedes and Culex mosquitoes: a risk map for chikungunya and west Nile viruses in Zambia. Viruses, 2023; 15, 1900. doi:  10.3390/v15091900
[26] Wiwanitkit V. Correlation between rainfall and the prevalence of malaria in Thailand. J Infect, 2006; 52, 227−30. doi:  10.1016/j.jinf.2005.02.023
[27] Jude PJ, Dharshini S, Vinobaba M, et al. Anopheles culicifacies breeding in brackish waters in Sri Lanka and implications for malaria control. Malar J, 2010; 9, 106. doi:  10.1186/1475-2875-9-106
[28] Couper LI, MacDonald AJ, Mordecai EA. Impact of prior and projected climate change on US Lyme disease incidence. Glob Chang Biol, 2021; 27, 738−54. doi:  10.1111/gcb.15435
[29] Valderrama A, Díaz Y, López-Vergès S. Interaction of Flavivirus with their mosquito vectors and their impact on the human health in the Americas. Biochem Biophys Res Commun, 2017; 492, 541−7. doi:  10.1016/j.bbrc.2017.05.050
[30] Steverding D. The history of leishmaniasis. Parasit Vectors, 2017; 10, 82. doi:  10.1186/s13071-017-2028-5
[31] WHO. Leishmaniasis. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis. [2025-03-10]
[32] Parums DV. Editorial: climate change and the spread of vector-borne diseases, including dengue, malaria, Lyme disease, and West Nile virus infection. Med Sci Monit, 2024; 29, e943546.
[33] Awad DA, Masoud HA, Hamad A. Climate changes and food-borne pathogens: the impact on human health and mitigation strategy. Climatic Change, 2024; 177, 92. doi:  10.1007/s10584-024-03748-9
[34] WHO. Food Safetyhttps://www.who.int/news-room/fact-sheets/detail/food-safety. [2025-03-10]
[35] Lee H, Yoon Y. Etiological agents implicated in foodborne illness world wide. Food Sci Anim Resour, 2021; 41, 1−7. doi:  10.5851/kosfa.2020.e75
[36] Bintsis T. Foodborne pathogens. AIMS Microbiol, 2017; 3, 529−63. doi:  10.3934/microbiol.2017.3.529
[37] Pexara A, Govaris A. Foodborne viruses and innovative non-thermal food-processing technologies. Foods, 2020; 9, 1520. doi:  10.3390/foods9111520
[38] War JM, Nisa AU, Wani AH, et al. Microbial food-borne diseases due to climate change. In: Parray JA, Bandh SA, Shameem N. Climate Change and Microbes. Apple Academic Press. 2022, 187-234.
[39] Vermeulen SJ, Campbell BM, Ingram JSI. Climate change and food systems. Annu Rev Env Resour, 2012; 37, 195−222. doi:  10.1146/annurev-environ-020411-130608
[40] Caminade C, McIntyre KM, Jones AE. Impact of recent and future climate change on vector-borne diseases. Ann N Y Acad Sci, 2019; 1436, 157−73. doi:  10.1111/nyas.13950
[41] Lake IR, Barker GC. Climate change, foodborne pathogens and illness in higher-income countries. Curr Environ Health Rep, 2018; 5, 187−96. doi:  10.1007/s40572-018-0189-9
[42] Cissé G, Koné B, Bâ H, et al. Ecohealth and climate change: adaptation to flooding events in riverside secondary cities, West Africa. In: Proceedings of the Cities and Adaptation to Climate Change-Proceedings of the Global Forum 2010 on Resilient Cities. Springer. 2011, 55-67.
[43] Liu Q, Liu M, Liu J. Association of drinking water services with the disease burden of diarrhea in children under five in 200 countries from 2000 to 2021. Cell Rep Sustain, 2024; 1, 100177.
[44] Liu Q, Liu M, Liu J. Global associations between the use of basic drinking water and sanitation services with diarrhoeal disease incidence in 200 countries and territories from 2000 to 2019. Public Health, 2024; 235, 202−10. doi:  10.1016/j.puhe.2024.07.004
[45] Singh BK, Delgado-Baquerizo M, Egidi E, et al. Climate change impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol, 2023; 21, 640−56. doi:  10.1038/s41579-023-00900-7
[46] Nel J, Richards L. Climate change and impact on infectious diseases. Wits J Clin Medicine, 2022; 4, 129−34. doi:  10.18772/26180197.2022.v4n3a1
[47] Peng ZH, Liu Y, Qi JJ, et al. The climate-driven distribution and response to global change of soil-borne pathogens in agroecosystems. Global Ecol Biogeogr, 2023; 32, 766−79. doi:  10.1111/geb.13662
[48] Smith BA, Fazil A. How will climate change impact microbial foodborne disease in Canada?. Can Commun Dis Rep, 2019; 45, 108−13. doi:  10.14745/ccdr.v45i04a05
[49] Dietrich J, Hammerl JA, Johne A, et al. Impact of climate change on foodborne infections and intoxications. J Health Monit, 2023; 8, 78−92.
[50] Qiu YJ, Zhou Y, Chang YF, et al. The effects of ventilation, humidity, and temperature on bacterial growth and bacterial genera distribution. Int J Environ Res Public Health, 2022; 19, 15345. doi:  10.3390/ijerph192215345
[51] Vezzulli L, Colwell RR, Pruzzo C. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb Ecol, 2013; 65, 817−25. doi:  10.1007/s00248-012-0163-2
[52] Guzman Herrador BR, De Blasio BF, MacDonald E, et al. Analytical studies assessing the association between extreme precipitation or temperature and drinking water-related waterborne infections: a review. Environ Health, 2015; 27, 29.
[53] Ebi K. Climate change and health risks: assessing and responding to them through ‘adaptive management’. Health Aff, 2011; 30, 924−30. doi:  10.1377/hlthaff.2011.0071
[54] Perrone G, Ferrara M, Medina A, et al. Toxigenic fungi and mycotoxins in a climate change scenario: ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms, 2020; 8, 1496. doi:  10.3390/microorganisms8101496
[55] Okaka FO, Odhiambo BDO. Relationship between flooding and out break of infectious diseasesin Kenya: a review of the literature. J Environ Public Health, 2018; 2018, 5452938.
[56] Tirado MC, Clarke R, Jaykus LA, et al. Climate change and food safety: a review. Food Res Int, 2010; 43, 1745−65. doi:  10.1016/j.foodres.2010.07.003
[57] Yusa A, Berry P, Cheng JJ, et al. Climate change, drought and human health in Canada. Int J Environ Res Public Health, 2015; 12, 8359−412. doi:  10.3390/ijerph120708359
[58] NYSERDA. Health impacts of power outages and warm weather on food safety. https://www.nyserda.ny.gov/-/media/Project/Nyserda/files/Publications/Research/Environmental/18-25-Health-Power-Outages.pdf. [2025-03-10]
[59] Oppenheimer M, Glavovic BC, Hinkel J, et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. https://www.ipcc.ch/srocc/chapter/chapter-4-sea-level-rise-and-implications-for-low-lying-islands-coasts-and-communities/. [2025-03-10]
[60] Zemouri C, Awad SF, Volgenant CMC, et al. Modeling of the transmission of coronaviruses, measles virus, influenza virus, mycobacterium tuberculosis, and legionella pneumophila in Dental Clinics. J Dent Res, 2020; 99, 1192−8. doi:  10.1177/0022034520940288
[61] Ndeh NT, Tesfaldet YT, Budnard J, et al. The secondary outcome of public health measures amidst the COVID-19 pandemic in the spread of other respiratory infectious diseases in Thailand. Travel Med Infect Dis, 2022; 48, 102348. doi:  10.1016/j.tmaid.2022.102348
[62] Danilenko AV, Kolosova NP, Shvalov AN, et al. Evaluation of HA-D222G/N polymorphism using targeted NGS analysis in A(H1N1)pdm09 influenza virus in Russia in 2018-2019. PLoS One, 2021; 16, e0251019. doi:  10.1371/journal.pone.0251019
[63] Poniedziałek B, Rzymski P, Zarębska-Michaluk D, et al. Viral respiratory infections and air pollution: a review focused on research in Poland. Chemosphere, 2024; 359, 142256. doi:  10.1016/j.chemosphere.2024.142256
[64] Safiri S, Mahmoodpoor A, Kolahi AA, et al. Global burden of lower respiratory infections during the last three decades. Front Public Health, 2022; 10, 1028525.
[65] Zhou Z, Gilca R, Deceuninck G, et al. Predictors of hospitalization for lower respiratory tract infection in children aged <2 years in the province of Quebec, Canada. Epidemiol Infect, 2016; 144, 1035−44. doi:  10.1017/S0950268815002204
[66] Kang LY, Jing WZ, Liu Q, et al. The trends of mortality, aetiologies and risk factors of lower respiratory infections in China from 1990 to 2019: findings from the Global Burden of Disease Study 2019. J Infect Public Health, 2022; 15, 870−6. doi:  10.1016/j.jiph.2022.06.016
[67] Shi Y, Zhang LP, Wu D, et al. Systematic analysis and prediction of the burden of lower respiratory tract infections attribute to non-optimal temperature, 1990-2019. Front Public Health, 2024; 12, 1424657. doi:  10.3389/fpubh.2024.1424657
[68] Liu Q, Deng J, Yan WX, et al. Burden and trends of infectious disease mortality attributed to air pollution, unsafe water, sanitation, and hygiene, and non-optimal temperature globally and in different socio-demographic index regions. Glob Health Res Policy, 2024; 9, 23. doi:  10.1186/s41256-024-00366-x
[69] Zhong W, Bragazzi NL, Kong JD, et al. Burden of respiratory infection and tuberculosis among US States from 1990 to 2019. Clin Epidemiol, 2021; 13, 503−14. doi:  10.2147/CLEP.S314802
[70] Tong M, Wondmagegn B, Xiang JJ, et al. Hospitalization costs of respiratory diseases attributable to temperature in Australia and Projections for future costs in the 2030s and 2050s under climate change. Int J Environ Res Public Health, 2022; 19, 9706. doi:  10.3390/ijerph19159706
[71] Ngo HKT, Luong LMT, Le HHTC, et al. Impact of temperature on hospital admission for acute lower respiratory infection (ALRI) among pre-school children in Ho Chi Minh City, Vietnam. Int J Biometeorol, 2021; 65, 1205−14. doi:  10.1007/s00484-021-02104-1
[72] Huang K, Hu CY, Yang XY, et al. Contributions of ambient temperature and relative humidity to the risk of tuberculosis admissions: a multicity study in Central China. Sci Total Environ, 2022; 838, 156272. doi:  10.1016/j.scitotenv.2022.156272
[73] Li WX, Wang XD, Bi B, et al. Influence of Temperature and Humidity on the Incidence of Pulmonary Tuberculosis in Hainan, China, 2004-2018. Biomed Environ Sci, 2024; 37, 1080−5.
[74] Wagatsuma K. Association of ambient temperature with tuberculosis incidence in Japan: An ecological study. IJID Reg, 2024; 12, 100384. doi:  10.1016/j.ijregi.2024.100384
[75] Ding F, Liu XL, Hu ZY, et al. Association between ambient temperature, PM2.5 and tuberculosis in Northwest China. Int J Environ Health Res, 2024; 34, 3173−87. doi:  10.1080/09603123.2023.2299236
[76] Xu M, Li Y, Liu B, et al. Temperature and humidity associated with increases in tuberculosis notifications: a time-series study in Hong Kong. Epidemiol Infect, 2020; 149, e8.
[77] Liyew AM, Clements ACA, Akalu TY, et al. Ecological-level factors associated with tuberculosis incidence and mortality: a systematic review and meta-analysis. PLoS Glob Public Health, 2024; 4, e0003425. doi:  10.1371/journal.pgph.0003425
[78] Kyd JM, Krishnamurthy A, Kidd S. Interactions and mechanisms of respiratory tract biofilms involving Streptococcus pneumoniae and nontypeable Haemophilus influenzae. Microb Biofilms-Importance Appl, 2016.
[79] Alotaibi GF, Bukhari MA. Factors influencing bacterial biofilm formation and development. Am J Biomed Sci Res, 2021; 12, 617−26.
[80] Horne BD, Joy EA, Hofmann MG, et al. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection. Am J Respir Crit Care Med, 2018; 198, 759−66. doi:  10.1164/rccm.201709-1883OC
[81] Burkart KG, Brauer M, Aravkin AY, et al. Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: a two-part modelling approach applied to the Global Burden of Disease Study. Lancet, 2021; 398, 685−97. doi:  10.1016/S0140-6736(21)01700-1
[82] Maharjan B, Gopali RS, Zhang Y. A scoping review on climate change and tuberculosis. Int J Biometeorol, 2021; 65, 1579−95. doi:  10.1007/s00484-021-02117-w
[83] Azimi P, Keshavarz Z, Cedeno Laurent JG, et al. Estimating the nationwide transmission risk of measles in US schools and impacts of vaccination and supplemental infection control strategies. BMC Infect Dis, 2020; 20, 497. doi:  10.1186/s12879-020-05200-6
[84] Brattig N, Bergquist R, Vienneau D, et al. Geography and health: role of human translocation and access to care. Infect Dis Poverty, 2024; 13, 37. doi:  10.1186/s40249-024-01205-4
[85] Revich B, Tokarevich N, Parkinson AJ. Climate change and zoonotic infections in the Russian Arctic. Int J Circumpol Heal, 2012; 71, 18792. doi:  10.3402/ijch.v71i0.18792
[86] Wang ZK, Pei SJ, Cui HL, et al. Zoonotic spillover and extreme weather events drive the global outbreaks of airborne viral emerging infectious diseases. J Med Virol, 2024; 96, e29737. doi:  10.1002/jmv.29737
[87] Waits A, Emelyanova A, Oksanen A, et al. Human infectious diseases and the changing climate in the Arctic. Environ Int, 2018; 121, 703−13. doi:  10.1016/j.envint.2018.09.042
[88] UNAIDS. How climate change is affecting people living with HIV. https://www.unaids.org/en/resources/presscentre/featurestories/2019/september/20190920_climate-change-people-living-with-hiv. [2025-03-10]
[89] ChildFund. The devastating impact of natural disasters. https://www.childfund.org/stories-and-news/2013/february/the-devastating-impact-of-natural-disasters/. [2025-03-10]
[90] AIDS Joint United Nations Programme on HIV and. People living with HIV: HIV prevalence. https://aidsinfo.unaids.org/. [2025-03-10] (查阅网上资料,未找到本条文献信息,请确认)
[91] Schooley RT. Our warming planet: is the HIV-1-infected population in the crosshairs. Top Antivir Med, 2016; 26, 67−70.
[92] Kaufmann GR, Elzi L, Weber R, et al. Interruptions of cART limits CD4 T-cell recovery and increases the risk for opportunistic complications and death. Aids, 2011; 25, 441−51. doi:  10.1097/QAD.0b013e3283430013
[93] Harrigan PR, Whaley M, Montaner JS. Rate of HIV-1 RNA rebound upon stopping antiretroviral therapy. Aids, 1999; 13, F59−62. doi:  10.1097/00002030-199905280-00001
[94] Crum-Cianflone N, Hullsiek KH, Satter E, et al. Cutaneous malignancies among HIV-infected persons. Arch Intern Med, 2009; 169, 1130−8. doi:  10.1001/archinternmed.2009.104
[95] Biggar RJ, Chaturvedi AK, Goedert JJ, et al. AIDS-related cancer and severity of immunosuppression in persons with AIDS. J Natl Cancer Inst, 2007; 99, 962−72. doi:  10.1093/jnci/djm010
[96] Kwak R, Kamal K, Charrow A, et al. Mass migration and climate change: dermatologic manifestations. Int J Womens Dermatol, 2021; 7, 98−106. doi:  10.1016/j.ijwd.2020.07.014
[97] Yunihastuti E, Widhani A, Karjadi TH. Drug hypersensitivity in human immunodeficiency virus-infected patient: challenging diagnosis and management. Asia Pac Allergy, 2014; 4, 54−67. doi:  10.5415/apallergy.2014.4.1.54
[98] Hoosen K, Mosam A, Dlova NC, et al. An update on adverse cutaneous drug reactions in HIV/AIDS. Dermatopath, 2019; 6, 111−25. doi:  10.1159/000496389
[99] Micali G, Lacarrubba F, Verzì AE, et al. Scabies: advances in noninvasive diagnosis. PLoS Negl Trop Dis, 2016; 10, e0004691. doi:  10.1371/journal.pntd.0004691
[100] Isenring E, Fehr J, Gültekin N, et al. Infectious disease profiles of Syrian and Eritrean migrants presenting in Europe: a systematic review. Travel Med Infect Dis, 2018; 25, 65−76. doi:  10.1016/j.tmaid.2018.04.014
[101] Arnaud A, Chosidow O, Détrez MA, et al. Prevalences of scabies and pediculosis corporis among homeless people in the Paris region: results from two randomized cross-sectional surveys (HYTPEAC study). Br J Dermatol, 2016; 174, 104−12. doi:  10.1111/bjd.14226
[102] Tsagkaris C, Eleftheriades A, Matiashova L. COVID-19, Monkeypox, climate change and surgery: a syndemic undermines the right to be operated in a clean, healthy and sustainable environment. Perioper Care Oper Room Manag, 2023; 30, 100305. doi:  10.1016/j.pcorm.2022.100305
[103] Phung D, Nguyen HX, Nguyen HLT, et al. Spatiotemporal variation of hand-foot-mouth disease in relation to socioecological factors: a multiple-province analysis in Vietnam. Sci Total Environ, 2018; 610-611, 983-91.
[104] Law A, Saunders P, Middleton J, et al. Global warming must stay below 1.5°C. BMJ, 2018; 363, k4410.
[105] IPCC. Global warming of 1.5°C. https://ipcc.ch/report/sr15/. [2025-03-10]
[106] Oxfam. Extreme carbon inequality. https://d1tn3vj7xz9fdh.cloudfront.net/s3fs-public/file_attachments/mb-extreme-carbon-inequality-021215-en.pdf. [2025-03-10]
[107] Semenza JC, Lindgren E, Balkanyi L, et al. Determinants and drivers of infectious disease threat events in Europe. Emerg Infect Dis, 2016; 22, 581−9. doi:  10.3201/eid2204.151073
[108] Sarkar A. Climate change: adverse health impacts and roles of health professionals. Int J Occup Environ Med, 2011; 2, 4−7.
[109] Roberts I, Stott R. Doctors and climate change. Int J Occup Environ Med, 2011; 2, 8−10.
[110] Alcayna T, Fletcher I, Gibb R, et al. Climate-sensitive disease outbreaks in the aftermath of extreme climatic events: a scoping review. One Earth, 2022; 5, 336−50. doi:  10.1016/j.oneear.2022.03.011
[111] Campbell AM, Racault MF, Goult S, et al. Cholera risk: a machine learning approach applied to essential climate variables. Int J Environ Res Public Health, 2020; 17, 9378. doi:  10.3390/ijerph17249378
[112] Gupta S, Kaur R, Sohal JS, et al. Countering zoonotic diseases: current scenario and advances in diagnostics, monitoring, prophylaxis and therapeutic strategies. Arch Med Res, 2024; 55, 103037. doi:  10.1016/j.arcmed.2024.103037
[113] Wilson AL, Courtenay O, Kelly-Hope LA, et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis, 2020; 14, e0007831. doi:  10.1371/journal.pntd.0007831
[114] Benelli G, Jeffries CL, Walker T. Biological control of mosquito vectors: past, present, and future. Insects, 2016; 7, 52. doi:  10.3390/insects7040052
[115] Chevalier V, Pépin M, Plée L, et al. Rift Valley fever--a threat for Europe?. Euro Surveill, 2010; 15, 19506.
[116] GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020; 396, 1223−49. doi:  10.1016/S0140-6736(20)30752-2
[117] Prüss-Ustün A, Wolf J, Bartram J, et al. Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: an updated analysis with a focus on low- and middle-income countries. Int J Hyg Environ Health, 2019; 222, 765−77. doi:  10.1016/j.ijheh.2019.05.004
[118] Wolf J, Hubbard S, Brauer M, et al. Effectiveness of interventions to improve drinking water, sanitation, and handwashing with soap on risk of diarrhoeal disease in children in low-income and middle-income settings: a systematic review and meta-analysis. Lancet, 2022; 400, 48−59. doi:  10.1016/S0140-6736(22)00937-0
[119] WHO. Drinking-water. https://www.who.int/news-room/fact-sheets/detail/drinking-water#:~:text=Safe%20and%20readily%20available%20water%20is%20important%20for,growth%20and%20can%20contribute%20greatly%20to%20poverty%20reduction. [2025-03-10]
[120] Liu Q, Li D, Xu Z, et al. Disparities in global disease burden attributed to ambient particulate matter pollution and household air pollution from solid fuels. Ecotoxicol Environ Saf, 2025; 291, 117908. doi:  10.1016/j.ecoenv.2025.117908
[121] Mannucci PM, Franchini M. Health effects of ambient air pollution in developing countries. Int J Environ Res Public Health, 2017; 14, 1048. doi:  10.3390/ijerph14091048
[122] WHO. WHO Guidelines for indoor air quality: household fuel combustion. https://iris.who.int/bitstream/handle/10665/141496/9789241548885_eng.pdf?sequence=1. [2025-03-10]
[123] McMichael AJ. Extreme weather events and infectious disease outbreaks. Virulence, 2015; 6, 543−7. doi:  10.4161/21505594.2014.975022
[124] Costello A, Abbas M, Allen A, et al. Managing the health effects of climate change. Lancet, 2009; 373, 1693−733. doi:  10.1016/S0140-6736(09)60935-1
[125] Campbell-Lendrum D, Manga L, Bagayoko M, et al. Climate change and vector-borne diseases: what are the implications for public health research and policy?. Philos Trans R Soc B Biol Sci, 2015; 370, 20130552. doi:  10.1098/rstb.2013.0552
[126] Liu Q, Du M, Wang YP, et al. Global, regional and national trends and impacts of natural floods, 1990-2022. Bull World Health Organ, 2024; 102, 410−20. doi:  10.2471/BLT.23.290243
[127] WHO. Pandemic prevention, preparedness and response accord. https://www.who.int/news-room/questions-and-answers/item/pandemic-prevention--preparedness-and-response-accord. [2025-03-10]