[1] Zhuang H, Jiang W, Zhang X, et al. Suppression of HSP70 expression sensitizes NSCLC cell lines to TRAIL-induced apoptosis by upregulating DR4 and DR5 and downregulating c-FLIP-L expressions. J Mol Med (Berl), 2013; 91, 219-35. doi:  10.1007/s00109-012-0947-3
[2] Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med, 1999; 5, 157-63. doi:  10.1038/5517
[3] Todaro M, Lombardo Y, Francipane MG, et al. Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death Differ, 2008; 15, 762-72. doi:  10.1038/sj.cdd.4402305
[4] Kischkel FC, Lawrence DA, Chuntharapai A, et al. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity, 2000; 12, 611-20. doi:  10.1016/S1074-7613(00)80212-5
[5] Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity, 1995; 3, 673-82. doi:  10.1016/1074-7613(95)90057-8
[6] Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ, 2003; 10, 26-35. doi:  10.1038/sj.cdd.4401186
[7] Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer, 2008; 8, 782-98. doi:  10.1038/nrc2465
[8] Kaufmann SH, Hengartner MO. Programmed cell death:alive and well in the new millennium. Trends Cell Biol, 2001; 11, 526-34. doi:  10.1016/S0962-8924(01)02173-0
[9] Gao X, Xu F, Zhang HT, et al. PKCalpha-GSK3beta-NF-kappaB signaling pathway and the possible involvement of TRIM21 in TRAIL-induced apoptosis. Biochem Cell Biol, 2016; 94, 256-64. doi:  10.1139/bcb-2016-0009
[10] Eder S, Lamkowski A, Priller M, et al. Radiosensitization and downregulation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) upon inhibition of mitogen/extracellular signal-regulated kinase (MEK) in malignant melanoma cells. Oncotarget, 2015; 6, 17178-91. doi:  10.18632/oncotarget.v6i19
[11] Chen LC, Liu HP, Li HP, et al. Thymidine phosphorylase mRNA stability and protein levels are increased through ERK-mediated cytoplasmic accumulation of hnRNP K in nasopharyngeal carcinoma cells. Oncogene, 2009; 28, 1904-15. doi:  10.1038/onc.2009.55
[12] Shiozaki EN, Shi Y. Caspases, IAPs and Smac/DIABLO:mechanisms from structural biology. Trends Biochem Sci, 2004; 29, 486-94. doi:  10.1016/j.tibs.2004.07.003
[13] Michael WM, Eder PS, Dreyfuss G. The K nuclear shuttling domain:a novel signal for nuclear import and nuclear export in the hnRNP K protein. EMBO J, 1997; 16, 3587-98. doi:  10.1093/emboj/16.12.3587
[14] Habelhah H, Shah K, Huang L, et al. ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nat Cell Biol, 2001; 3, 325-30. doi:  10.1038/35060131
[15] Kotliarova S, Pastorino S, Kovell LC, et al. Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res, 2008; 68, 6643-51. doi:  10.1158/0008-5472.CAN-08-0850
[16] Beurel E, Blivet-Van Eggelpoël MJ, Kornprobst M, et al. Glycogen synthase kinase-3 inhibitors augment TRAIL-induced apoptotic death in human hepatoma cells. Biochem Pharmacol, 2009; 77, 54-65. doi:  10.1016/j.bcp.2008.09.026
[17] Liao X, Zhang L, Thrasher JB, et al. Glycogen synthase kinase-3beta suppression eliminates tumor necrosis factor-related apoptosis-inducing ligand resistance in prostate cancer. Mol Cancer Ther, 2003; 2, 1215-22. https://www.omicsonline.org/references/glycogen-synthase-kinase3beta-suppression-eliminates-tumor-necrosis-factorrelated-apoptosisinducing-ligand-resistance-in-prostate-cancer-595289.html
[18] Song L, Zhou T, Jope RS. Lithium facilitates apoptotic signaling induced by activation of the Fas death domain-containing receptor. BMC Neurosci, 2004; 5, 20. doi:  10.1186/1471-2202-5-20
[19] Chen S, Cao W, Yue P, et al. Celecoxib promotes c-FLIP degradation through Akt-independent inhibition of GSK3. Cancer Res, 2011; 71, 6270-81. doi:  10.1158/0008-5472.CAN-11-0838
[20] Gao X, Feng J, He Y, et al. hnRNPK inhibits GSK3beta Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells. Sci Rep, 2016; 6, 22999. doi:  10.1038/srep22999
[21] Xiao Z, Ko HL, Goh EH, et al. hnRNP K suppresses apoptosis independent of p53 status by maintaining high levels of endogenous caspase inhibitors. Carcinogenesis, 2013; 34, 1458-67. doi:  10.1093/carcin/bgt085
[22] Choi HS, Hwang CK, Song KY, et al. Poly(C)-binding proteins as transcriptional regulators of gene expression. Biochem Biophys Res Commun, 2009; 380, 431-6. doi:  10.1016/j.bbrc.2009.01.136
[23] Lee PT, Liao PC, Chang WC, et al. Epidermal growth factor increases the interaction between nucleolin and heterogeneous nuclear ribonucleoprotein K/poly(C) binding protein 1 complex to regulate the gastrin mRNA turnover. Mol Biol Cell, 2007; 18, 5004-13. doi:  10.1091/mbc.E07-04-0384
[24] Barboro P, Repaci E, Rubagotti A, et al. Heterogeneous nuclear ribonucleoprotein K:altered pattern of expression associated with diagnosis and prognosis of prostate cancer. Br J Cancer, 2009; 100, 1608-16. doi:  10.1038/sj.bjc.6605057
[25] Matta A, Tripathi SC, DeSouza LV, et al. Heterogeneous ribonucleoprotein K is a marker of oral leukoplakia and correlates with poor prognosis of squamous cell carcinoma. Int J Cancer, 2009; 125, 1398-406. doi:  10.1002/ijc.v125:6
[26] Chen LC, Hsueh C, Tsang NM, et al. Heterogeneous ribonucleoprotein k and thymidine phosphorylase are independent prognostic and therapeutic markers for nasopharyngeal carcinoma. Clin Cancer Res, 2008; 14, 3807-13. doi:  10.1158/1078-0432.CCR-08-0155
[27] Carpenter B, McKay M, Dundas SR, et al. Heterogeneous nuclear ribonucleoprotein K is over expressed, aberrantly localised and is associated with poor prognosis in colorectal cancer. Br J Cancer, 2006; 95, 921-7. doi:  10.1038/sj.bjc.6603349
[28] Chen X, Gu P, Xie R, et al. Heterogeneous nuclear ribonucleoprotein K is associated with poor prognosis and regulates proliferation and apoptosis in bladder cancer. J Cell Mol Med, 2016. https://www.researchgate.net/publication/310515586_Heterogeneous_nuclear_ribonucleoprotein_K_is_associated_with_poor_prognosis_and_regulates_proliferation_and_apoptosis_in_bladder_cancer
[29] Dreyfuss G, Matunis MJ, Pinol-Roma S, et al. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem, 1993; 62, 289-321. doi:  10.1146/annurev.bi.62.070193.001445
[30] Ostareck-Lederer A, Ostareck DH, Cans C, et al. c-Src-mediated phosphorylation of hnRNP K drives translational activation of specifically silenced mRNAs. Mol Cell Biol, 2002; 22, 4535-43. doi:  10.1128/MCB.22.13.4535-4543.2002
[31] Adolph D, Flach N, Mueller K, et al. Deciphering the cross talk between hnRNP K and c-Src:the c-Src activation domain in hnRNP K is distinct from a second interaction site. Mol Cell Biol, 2007; 27, 1758-70. doi:  10.1128/MCB.02014-06
[32] Sen B, Johnson FM. Regulation of SRC family kinases in human cancers. J Signal Transduct, 2011; 2011, 865819. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135246/
[33] Gao X, Dan S, Xie Y, et al. 14-3-3ζ reduces DNA damage by interacting with and stabilizing proliferating cell nuclear antigen. J Cell Biochem, 2015; 116, 158-69. doi:  10.1002/jcb.v116.1
[34] Gao X, Wang JY, Gao LM, et al. Identification and analysis of glycogen synthase kinase 3 beta1 interactome. Cell Biol Int, 2013; 37, 768-79. doi:  10.1002/cbin.v37.8
[35] Gao X, He Y, Gao LM, et al. Ser9-phosphorylated GSK3β induced by 14-3-3ζ actively antagonizes cell apoptosis in a NF-κB dependent manner. Biochem Cell Biol, 2014; 92, 349-56. doi:  10.1139/bcb-2014-0065
[36] Gao X, He Y, Gao LM, et al. Ser9-phosphorylated GSK3beta induced by 14-3-3zeta actively antagonizes cell apoptosis in a NF-kappaB dependent manner. Biochem Cell Biol, 2014; 92, 349-56. doi:  10.1139/bcb-2014-0065
[37] Felber M, Sonnemann J, Beck JF. Inhibition of novel protein kinase C-epsilon augments TRAIL-induced cell death in A549 lung cancer cells. Pathol Oncol Res, 2007; 13, 295-301. doi:  10.1007/BF02940308
[38] Vogler M, Dürr K, Jovanovic M, et al. Regulation of TRAIL-induced apoptosis by XIAP in pancreatic carcinoma cells. Oncogene, 2007; 26, 248-57. doi:  10.1038/sj.onc.1209776
[39] Yang S, Li SS, Yang XM, et al. Embelin prevents LMP1-induced TRAIL resistance via inhibition of XIAP in nasopharyngeal carcinoma cells. Oncol Lett, 2016; 11, 4167-76. https://www.researchgate.net/publication/301944814_Embelin_prevents_LMP1-induced_TRAIL_resistance_via_inhibition_of_XIAP_in_nasopharyngeal_carcinoma_cells
[40] Chen LC, Chung IC, Hsueh C, et al. The antiapoptotic protein, FLIP, is regulated by heterogeneous nuclear ribonucleoprotein K and correlates with poor overall survival of nasopharyngeal carcinoma patients. Cell Death Differ, 2010; 17, 1463-73. doi:  10.1038/cdd.2010.24