[1] Vutskits L, Xie Z. Lasting impact of general anaesthesia on the brain, mechanisms and relevance. Nat Rev Neurosci, 2016; 17, 705-17. doi:  10.1038/nrn.2016.128
[2] Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly, ISPOCD1 study. The Lancet, 1998; 351, 857-61. doi:  10.1016/S0140-6736(97)07382-0
[3] Cibelli M, Fidalgo AR, Terrando N, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol, 2010; 68, 360-8. doi:  10.1002/ana.22082
[4] Terrando N, Eriksson LI, Ryu JK, et al. Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol, 2011; 70, 986-95. doi:  10.1002/ana.22664
[5] Tan H, Bi J, Wang Y, et al. Transfusion of Old RBCs Induces Neuroinflammation and Cognitive Impairment. Crit Care Med, 2015; 43, e276-86. doi:  10.1097/CCM.0000000000001023
[6] AM CRUICKSHANK WDF, HJG BURNS, J VAN DAMME, et al. Response of serum interleukin-6 in patients undergoing elective surgery of varying severity. Clinical Science, 1990; 79, 161-5. doi:  10.1042/cs0790161
[7] Wan YJ, Ma DQ, Zeng YM, et al. Postoperative Impairment of Cognitive Function in Rats. Anesthesiology, 2007; 106, 436-43. doi:  10.1097/00000542-200703000-00007
[8] Ye J, Yao JP, Wang X, et al. Neuroprotective effects of ginsenosides on neural progenitor cells against oxidative injury. Mol Med Rep, 2016; 13, 3083-91. https://www.researchgate.net/publication/295251464_Neuroprotective_effects_of_ginsenosides_on_neural_progenitor_cells_against_oxidative_injury
[9] Gao JL, Lv GY, He BC, et al. Ginseng saponin metabolite 20(S)-protopanaxadiol inhibits tumor growth by targeting multiple cancer signaling pathways. Oncol Rep, 2013; 30, 292-8. https://www.cancer.gov/archive/arch_drugdictionary.aspx?expand=S
[10] Wu LL, Sun J, Chen JX, et al. Protective Effects of Ginsenoside Rb1 on Septic Rats and Its Mechanism. Biomed Environ Sci, 2014; 27, 300-3. http://www.cnki.com.cn/Article/CJFDTotal-SWYX201404009.htm
[11] Kim TW, Joh EH, Kim B, et al. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int Immunopharmacol, 2012; 12, 110-6. doi:  10.1016/j.intimp.2011.10.023
[12] Lee IA, Hyam SR, Jang SE, et al. Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem, 2012; 60, 9595-602. doi:  10.1021/jf301372g
[13] Li J, Zhong W, Wang W, et al. Ginsenoside metabolite compound K promotes recovery of dextran sulfate sodium-induced colitis and inhibits inflammatory responses by suppressing NF-kappaB activation. PLoS One, 2014; 9, e87810. doi:  10.1371/journal.pone.0087810
[14] Li P, Lv B, Jiang X, et al. Identification of NF-kappaB inhibitors following Shenfu injection and bioactivity-integrated UPLC/Q-TOF-MS and screening for related anti-inflammatory targets in vitro and in silico. J Ethnopharmacol, 2016; 194, 658-67. doi:  10.1016/j.jep.2016.10.052
[15] Miao HH, Zhen Y, Ding GN, et al. Ginsenoside Rg1 Attenuates Isoflurane-induced Caspase-3 Activation via Inhibiting Mitochondrial Dysfunction. Biomed Environ Sci, 2015; 28, 116-26. https://www.researchgate.net/publication/272837898_Ginsenoside_Rg1_Attenuates_Isoflurane-induced_Caspase-3_Activation_via_Inhibiting_Mitochondrial_Dysfunction
[16] Zu G, Guo J, Che N, et al. Protective effects of ginsenoside Rg1 on intestinal ischemia/reperfusion injury-induced oxidative stress and apoptosis via activation of the Wnt/beta-catenin pathway. Sci Rep, 2016; 6, 38480. doi:  10.1038/srep38480
[17] Ahmed T, Raza SH, Maryam A, et al. Ginsenoside Rb1 as a neuroprotective agent: A review. Brain Res Bull, 2016; 125, 30-43. doi:  10.1016/j.brainresbull.2016.04.002
[18] Cheng W, Wu D, Zuo Q, et al. Ginsenoside Rb1 prevents interleukin-1 beta induced inflammation and apoptosis in human articular chondrocytes. Int Orthop, 2013; 37, 2065-70. doi:  10.1007/s00264-013-1990-6
[19] Song Z, Liu Y, Hao B, et al. Ginsenoside Rb1 prevents H2O2-induced HUVEC senescence by stimulating sirtuin-1 pathway. PLoS One, 2014; 9, e112699. doi:  10.1371/journal.pone.0112699
[20] Jang M, Lee MJ, Choi JH, et al. Ginsenoside Rb1 Attenuates Acute Inflammatory Nociception by Inhibition of Neuronal ERK Phosphorylation by Regulation of the Nrf2 and NF-kappaB Pathways. J Pain, 2016; 17, 282-97. doi:  10.1016/j.jpain.2015.10.007
[21] Jiang Y, Zhou Z, Meng QT, et al. Ginsenoside Rb1 Treatment Attenuates Pulmonary Inflammatory Cytokine Release and Tissue Injury following Intestinal Ischemia Reperfusion Injury in Mice. Oxid Med Cell Longev, 2015; 2015, 843721. https://www.researchgate.net/publication/225300852_Ginsenoside_Rb1_Attenuates_Intestinal_Ischemia_Reperfusion_Induced_Renal_Injury_by_Activating_Nrf2ARE_Pathway
[22] Zhang J, Dong Y, Zhou C, et al. Anesthetic Sevoflurane Reduces Levels of Hippocalcin and Postsynaptic Density Protein 95. Mol Neurobiol, 2015; 51, 853-63. doi:  10.1007/s12035-014-8746-1
[23] Zheng H, Dong Y, Xu Z, et al. Sevoflurane anesthesia in pregnant mice induces neurotoxicity in fetal and offspring mice. Anesthesiology, 2013; 118, 516-26. doi:  10.1097/ALN.0b013e3182834d5d
[24] Xu Z, Dong Y, Wang H, et al. Peripheral surgical wounding and age-dependent neuroinflammation in mice. PLoS One, 2014; 9, e96752. doi:  10.1371/journal.pone.0096752
[25] Zhang J, Jiang W, Zuo Z. Pyrrolidine dithiocarbamate attenuates surgery-induced neuroinflammation and cognitive dysfunction possibly via inhibition of nuclear factor kappaB. Neuroscience, 2014; 261, 1-10. doi:  10.1016/j.neuroscience.2013.12.034
[26] Ratno Budiarto B, Chan WH. Oxidative stresses-mediated apoptotic effects of ginsenoside Rb1 on pre-and post-implantation mouse embryos in vitro and in vivo. Environ Toxicol, 2016. https://www.researchgate.net/publication/308329725_Oxidative_stresses-mediated_apoptotic_effects_of_ginsenoside_Rb1_on_pre-_and_post-implantation_mouse_embryos_in_vitro_and_in_vivo
[27] Peng M, Zhang C, Dong Y, et al. Battery of behavioral tests in mice to study postoperative delirium. Sci Rep, 2016; 6, 29874. doi:  10.1038/srep29874
[28] Dong X, Zheng L, Lu S, et al. Neuroprotective effects of pretreatment of ginsenoside Rb1 on severe cerebral ischemia-induced injuries in aged mice, Involvement of anti-oxidant signaling. Geriatr Gerontol Int, 2015; 17, 338-45. https://www.researchgate.net/publication/299800071_Ginsenoside_Rb1_as_a_neuroprotective_agent_A_review
[29] J JORIS IC, M LEGRAND, N JACQUET, et al. Metabolic And Respiratory Changes After Cholecystectomy Performed Via Laparotomy or Lap Aroscopy. British Journal OF ANAESTHESIA, 1992; 69, 341-5. doi:  10.1093/bja/69.4.341
[30] RJ Baigrie, PM Lamont, D Kwiatkowski, et al. Systemic cytokine response after major surgery. Br J Surg, 1992; 79, 757-60. doi:  10.1002/(ISSN)1365-2168
[31] N Terrando, C Monaco, D Ma, et al. Tumor necrosis factor-α triggers a cytokine cascade yielding postoperative cognitive decline. PNAS, 2010; 107, 20518-22. doi:  10.1073/pnas.1014557107
[32] LE Goehler, RP Gaykema, SE Hammack, et al. Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve. Brain Research, 1998; 804, 306-10. doi:  10.1016/S0006-8993(98)00685-4
[33] WA Banks AJ Kastin, CA Ehrensing. Blood-borne interleukin-1 alpha is transported across the endothelial blood-spinal cord barrier of mice. Journal of Physiology, 1994; 479, 257-64. doi:  10.1113/jphysiol.1994.sp020293
[34] Persson T, Popescu BO, Cedazo-Minguez A. Oxidative stress in Alzheimer's disease, why did antioxidant therapy fail? Oxid Med Cell Longev, 2014; 2014, 427318. https://www.researchgate.net/profile/Bogdan_Popescu/publication/261106407_Oxidative_Stress_in_Alzheimer%27s_Disease_Why_Did_Antioxidant_Therapy_Fail/links/54eb494d0cf29a16cbe5b90f.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
[35] Gubandru M, Margina D, Tsitsimpikou C, et al. Alzheimer's disease treated patients showed different patterns for oxidative stress and inflammation markers. Food Chem Toxicol, 2013; 61, 209-14. doi:  10.1016/j.fct.2013.07.013
[36] Dumont M, Beal MF. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med, 2011; 51, 1014-26. doi:  10.1016/j.freeradbiomed.2010.11.026
[37] Chang YT, Chang WN, Tsai NW, et al. The roles of biomarkers of oxidative stress and antioxidant in Alzheimer's disease, a systematic review. Biomed Res Int, 2014; 2014, 182303. https://www.researchgate.net/profile/Chih-Min_Su/publication/263297249_The_Roles_of_Biomarkers_of_Oxidative_Stress_and_Antioxidant_in_Alzheimer%27s_Disease_A_Systematic_Review/links/0046353aa978e895dc000000.pdf?origin=publication_detail
[38] Cervellati C, Romani A, Seripa D, et al. Systemic oxidative stress and conversion to dementia of elderly patients with mild cognitive impairment. Biomed Res Int, 2014; 2014, 309507.
[39] Chiapinotto Spiazzi C, Bucco Soares M, Pinto Izaguirry A, et al. Selenofuranoside Ameliorates Memory Loss in Alzheimer-Like Sporadic Dementia, AChE Activity, Oxidative Stress, and Inflammation Involvement. Oxid Med Cell Longev, 2015; 2015, 976908. https://www.researchgate.net/profile/Ricardo_Affeldt/publication/277939276_Selenofuranoside_Ameliorates_Memory_Loss_in_Alzheimer-Like_Sporadic_Dementia_AChE_Activity_Oxidative_Stress_and_Inflammation_Involvement/links/56105f9b08aec422d1154ed0.pdf?origin=publication_list
[40] Zhou WW, Lu S, Su YJ, et al. Decreasing oxidative stress and neuroinflammation with a multifunctional peptide rescues memory deficits in mice with Alzheimer disease. Free Radic Biol Med, 2014; 74, 50-63. doi:  10.1016/j.freeradbiomed.2014.06.013
[41] Verdile G, Keane KN, Cruzat VF, et al. Inflammation and Oxidative Stress: The Molecular Connectivity between Insulin Resistance, Obesity, and Alzheimer's Disease. Mediators Inflamm, 2015; 2015, 105828. http://paper.medlive.cn/literature/1581257
[42] Chai H, Huang LF, Xie T, et al. Ginsenoside Rb1 Inhibits Tumor Necrosis Factor-a-Induced Vascular Cell Adhesion Molecule-1 Expression in Human Endothelial Cells. Biol Pharm Bull, 2008; 32, 2050-6. https://www.researchgate.net/publication/23448936_Ginsenoside_Rb1_Inhibits_Tumor_Necrosis_Factor-a-Induced_Vascular_Cell_Adhesion_Molecule-1_Expression_in_Human_Endothelial_Cells
[43] Lee JS, Song JH, Sohn NW, et al. Inhibitory effects of ginsenoside Rb1 on neuroinflammation following systemic lipopolysaccharide treatment in mice. Phytother Res, 2013; 27, 1270-6. doi:  10.1002/ptr.v27.9
[44] Liu J, He J, Huang L, et al. Neuroprotective effects of ginsenoside Rb1 on hippocampal neuronal injury and neurite outgrowth. Neural Regen Res, 2014; 9, 943-50. doi:  10.4103/1673-5374.133137