[1] |
To T, Stanojevic S, Moores G, et al. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health, 2012; 12, 204. doi: 10.1186/1471-2458-12-204 |
[2] |
Perez MK, Piedimonte G. Metabolic asthma: is there a link between obesity, diabetes, and asthma? Immunol Allergy Clin North Am, 2014; 34, 777-84. |
[3] |
Wu TD, Brigham EP, Keet CA, et al. Association between prediabetes/diabetes and asthma exacerbations in a claims-based obese asthma cohort. J Allergy Clin Immunol Pract, 2019; 7, 1868-73. e5. |
[4] |
Brumpton BM, Camargo CA Jr, Romundstad PR, et al. Metabolic syndrome and incidence of asthma in adults: the HUNT study. Eur Respir J, 2013; 42, 1495−502. doi: 10.1183/09031936.00046013 |
[5] |
Cardet JC, Ash S, Kusa T, et al. Insulin resistance modifies the association between obesity and current asthma in adults. Eur Respir J, 2016; 48, 403−10. doi: 10.1183/13993003.00246-2016 |
[6] |
Yang G, Han YY, Forno E, et al. Glycated hemoglobin A1c, lung function, and hospitalizations among adults with Asthma. J Allergy Clin Immunol Pract, 2020; 8, 3409-15. e1. |
[7] |
Peters MC, Mauger D, Ross KR, et al. Evidence for exacerbation-prone asthma and predictive biomarkers of exacerbation frequency. Am J Respir Crit Care Med, 2020; 202, 973−82. doi: 10.1164/rccm.201909-1813OC |
[8] |
Rastogi D, Fraser S, Oh J, et al. Inflammation, metabolic dysregulation, and pulmonary function among obese urban adolescents with asthma. Am J Respir Crit Care Med, 2015; 191, 149−60. doi: 10.1164/rccm.201409-1587OC |
[9] |
Kankaanranta H, Kauppi P, Tuomisto LE, et al. Emerging comorbidities in adult asthma: risks, clinical associations, and mechanisms. Mediators Inflamm, 2016; 2016, 3690628. |
[10] |
Zhang P, Lopez R, Attaway AH, et al. Diabetes mellitus is associated with worse outcome in patients hospitalized for Asthma. J Allergy Clin Immunol Pract, 2021; 9, 1562-69. e1. |
[11] |
Rayner L, McGovern A, Creagh-Brown B, et al. Type 2 diabetes and asthma: systematic review of the bidirectional relationship. Curr Diabetes Rev, 2019; 15, 118−26. doi: 10.2174/1573399814666180711114859 |
[12] |
Van Ruiten CC, Smits MM, Kok MD, et al. Mechanisms underlying the blood pressure lowering effects of dapagliflozin, exenatide, and their combination in people with type 2 diabetes: a secondary analysis of a randomized trial. Cardiovasc Diabetol, 2022; 21, 63. doi: 10.1186/s12933-022-01492-x |
[13] |
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in Type 2 diabetes. N Engl J Med, 2016; 375, 311−22. doi: 10.1056/NEJMoa1603827 |
[14] |
Finan B, Ma T, Ottaway N, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med, 2013; 5, 209ra151. |
[15] |
Chow E, Chan JCN. The emerging role of incretins and twincretins. Nat Rev Endocrinol, 2022; 18, 73−4. doi: 10.1038/s41574-021-00607-w |
[16] |
Coskun T, Urva S, Roell WC, et al. LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: From discovery to clinical proof of concept. Cell Metab, 2022; 34, 1234-47. e9. |
[17] |
Foer D, Beeler PE, Cui J, et al. Asthma exacerbations in patients with type 2 diabetes and asthma on glucagon-like peptide-1 receptor agonists. Am J Respir Crit Care Med, 2021; 203, 831−40. doi: 10.1164/rccm.202004-0993OC |
[18] |
Toki S, Zhang J, Printz RL, et al. Dual GIPR and GLP-1R agonist tirzepatide inhibits aeroallergen-induced allergic airway inflammation in mouse model of obese asthma. Clin Exp Allergy, 2023; 53, 216−21. doi: 10.1111/cea.14252 |
[19] |
Wang AH, Tang HL, Zhang N, et al. Association between novel glucose-lowering drugs and risk of Asthma: a network meta-analysis of cardiorenal outcome trials. Diabetes Res Clin Pract, 2022; 183, 109080. doi: 10.1016/j.diabres.2021.109080 |
[20] |
Higgins J, Thomas J. Cochrane handbook for systematic reviews of interventions. https://training.cochrane.org/handbook/current. [2023-10-17]. |
[21] |
Khan F, Mat A, Hogan AE, et al. Preliminary asthma-related outcomes following glucagon-like peptide 1 agonist therapy. QJM Mon J Assoc Physicians, 2017; 110, 853−4. doi: 10.1093/qjmed/hcx125 |
[22] |
Koskela HO, Salonen PH, Niskanen L. Hyperglycaemia during exacerbations of asthma and chronic obstructive pulmonary disease. Clin Respir J, 2013; 7, 382−9. doi: 10.1111/crj.12020 |
[23] |
Kosmalski M, Różycka-Kosmalska M, Witusik A, et al. The coincidence of diabetes mellitus and asthma, their probable causal relationships and therapeutic opportunities. Adv Respir Med, 2020; 88, 590−8. doi: 10.5603/ARM.a2020.0168 |
[24] |
Cazzola M, Calzetta L, Rogliani P, et al. High glucose enhances responsiveness of human airways smooth muscle via the Rho/ROCK pathway. Am J Respir Cell Mol Biol, 2012; 47, 509−16. doi: 10.1165/rcmb.2011-0449OC |
[25] |
Thomsen SF, Duffy DL, Kyvik KO, et al. Risk of asthma in adult twins with type 2 diabetes and increased body mass index. Allergy, 2011; 66, 562−8. doi: 10.1111/j.1398-9995.2010.02504.x |
[26] |
Toki S, Goleniewska K, Reiss S, et al. Glucagon-like peptide 1 signaling inhibits allergen-induced lung IL-33 release and reduces group 2 innate lymphoid cell cytokine production in vivo. J Allergy Clin Immunol, 2018; 142, 1515-28. e8. |
[27] |
Delgado J, Barranco P, Quirce S. Obesity and asthma. J Investig Allergol Clin Immunol, 2008; 18, 420−5. |
[28] |
Beuther DA. Recent insight into obesity and asthma. Curr Opin Pulm Med, 2010; 16, 64−70. doi: 10.1097/MCP.0b013e3283338fa7 |
[29] |
Thuesen BH, Husemoen LLN, Hersoug LG, et al. Insulin resistance as a predictor of incident asthma-like symptoms in adults. Clin Exp Allergy J Br Soc Allergy Clin Immunol, 2009; 39, 700−7. doi: 10.1111/j.1365-2222.2008.03197.x |
[30] |
Beuther DA, Sutherland ER. Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies. Am J Respir Crit Care Med, 2007; 175, 661−6. doi: 10.1164/rccm.200611-1717OC |
[31] |
Hjellvik V, Tverdal A, Furu K. Body mass index as predictor for asthma: a cohort study of 118, 723 males and females. Eur Respir J, 2010; 35, 1235−42. doi: 10.1183/09031936.00192408 |
[32] |
Wang L, Wang KS, Gao X, et al. Sex difference in the association between obesity and asthma in U. S. adults: Findings from a national study. Respir Med, 2015; 109, 955−62. doi: 10.1016/j.rmed.2015.06.001 |
[33] |
Assad N, Qualls C, Smith LJ, et al. Body mass index is a stronger predictor than the metabolic syndrome for future asthma in women. The longitudinal CARDIA study. Am J Respir Crit Care Med, 2013; 188, 319−26. doi: 10.1164/rccm.201303-0457OC |
[34] |
Brumpton B, Langhammer A, Romundstad P, et al. General and abdominal obesity and incident asthma in adults: the HUNT study. Eur Respir J, 2013; 41, 323−9. doi: 10.1183/09031936.00012112 |
[35] |
Grasemann H, Holguin F. Oxidative stress and obesity-related asthma. Paediatr Respir Rev, 2021; 37, 18−21. |
[36] |
Hasegawa K, Tsugawa Y, Chang Y, et al. Risk of an asthma exacerbation after bariatric surgery in adults. J Allergy Clin Immunol, 2015; 136, 288-94. e8. |
[37] |
Toki S, Newcomb DC, Printz RL, et al. Glucagon-like peptide-1 receptor agonist inhibits aeroallergen-induced activation of ILC2 and neutrophilic airway inflammation in obese mice. Allergy, 2021; 76, 3433−45. doi: 10.1111/all.14879 |
[38] |
Zhang Y, Zhou H, Wu WB, et al. Liraglutide protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury through the suppression of the SR-Ca2+-XO-ROS axis via activation of the GLP-1R/PI3K/Akt/survivin pathways. Free Radic Biol Med, 2016; 95, 278−92. doi: 10.1016/j.freeradbiomed.2016.03.035 |
[39] |
Chen J, Xie JJ, Shi KS, et al. Glucagon-like peptide-1 receptor regulates endoplasmic reticulum stress-induced apoptosis and the associated inflammatory response in chondrocytes and the progression of osteoarthritis in rat. Cell Death Dis, 2018; 9, 212. doi: 10.1038/s41419-017-0217-y |
[40] |
Richter G, Feddersen O, Wagner U, et al. GLP-1 stimulates secretion of macromolecules from airways and relaxes pulmonary artery. Am J Physiol, 1993; 265, L374−81. |
[41] |
Shiraishi D, Fujiwara Y, Komohara Y, et al. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation. Biochem Biophys Res Commun, 2012; 425, 304−8. doi: 10.1016/j.bbrc.2012.07.086 |
[42] |
Wootten D, Reynolds CA, Smith KJ, et al. The extracellular surface of the GLP-1 receptor is a molecular trigger for biased agonism. Cell, 2016; 165, 1632−43. doi: 10.1016/j.cell.2016.05.023 |
[43] |
Zhu T, Wu XL, Zhang W, et al. Glucagon like Peptide-1 (GLP-1) modulates OVA-induced airway inflammation and mucus secretion involving a protein Kinase A (PKA)-dependent nuclear Factor-κB (NF-κB) signaling pathway in mice. Int J Mol Sci, 2015; 16, 20195−211. doi: 10.3390/ijms160920195 |
[44] |
Bullock BP, Heller RS, Habener JF. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology, 1996; 137, 2968−78. doi: 10.1210/endo.137.7.8770921 |
[45] |
Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab, 2018; 27, 740−56. doi: 10.1016/j.cmet.2018.03.001 |
[46] |
Billington CK, Ojo OO, Penn RB, et al. cAMP regulation of airway smooth muscle function. Pulm Pharmacol Ther, 2013; 26, 112−20. doi: 10.1016/j.pupt.2012.05.007 |
[47] |
Kim HK, Lee GH, Bhattarai KR, et al. PI3Kδ contributes to ER stress-associated asthma through ER-redox disturbances: the involvement of the RIDD-RIG-I-NF-κB axis. Exp Mol Med, 2018; 50, e444. doi: 10.1038/emm.2017.270 |
[48] |
Hsu HS, Liu CC, Lin JH, et al. Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis. Sci Rep, 2017; 7, 14272. doi: 10.1038/s41598-017-14612-5 |
[49] |
Michaeloudes C, Abubakar-Waziri H, Lakhdar R, et al. Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med, 2022; 85, 101026. doi: 10.1016/j.mam.2021.101026 |
[50] |
Nguyen DV, Linderholm A, Haczku A, et al. Glucagon-like peptide 1: A potential anti-inflammatory pathway in obesity-related asthma. Pharmacol Ther, 2017; 180, 139−143. doi: 10.1016/j.pharmthera.2017.06.012 |
[51] |
Zimmermann N, Rothenberg ME. The arginine-arginase balance in asthma and lung inflammation. Eur J Pharmacol, 2006; 533, 253−62. doi: 10.1016/j.ejphar.2005.12.047 |
[52] |
Rogliani P, Calzetta L, Capuani B, et al. Glucagon-like peptide 1 receptor: a novel pharmacological target for treating human bronchial hyperresponsiveness. Am J Respir Cell Mol Biol, 2016; 55, 804−14. doi: 10.1165/rcmb.2015-0311OC |
[53] |
de Vries JE. The role of IL-13 and its receptor in allergy and inflammatory responses. J Allergy Clin Immunol, 1998; 102, 165−9. doi: 10.1016/S0091-6749(98)70080-6 |
[54] |
Bloodworth MH, Rusznak M, Pfister CC, et al. Glucagon-like peptide 1 receptor signaling attenuates respiratory syncytial virus-induced type 2 responses and immunopathology. J Allergy Clin Immunol, 2018; 142, 683-7. e12. |
[55] |
Wei JP, Yang CL, Leng WH, et al. Use of GLP1RAs and occurrence of respiratory disorders: A meta-analysis of large randomized trials of GLP1RAs. Clin Respir J, 2021; 15, 847−50. doi: 10.1111/crj.13372 |