[1] To T, Stanojevic S, Moores G, et al. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health, 2012; 12, 204. doi:  10.1186/1471-2458-12-204
[2] Perez MK, Piedimonte G. Metabolic asthma: is there a link between obesity, diabetes, and asthma? Immunol Allergy Clin North Am, 2014; 34, 777-84.
[3] Wu TD, Brigham EP, Keet CA, et al. Association between prediabetes/diabetes and asthma exacerbations in a claims-based obese asthma cohort. J Allergy Clin Immunol Pract, 2019; 7, 1868-73. e5.
[4] Brumpton BM, Camargo CA Jr, Romundstad PR, et al. Metabolic syndrome and incidence of asthma in adults: the HUNT study. Eur Respir J, 2013; 42, 1495502. doi:  10.1183/09031936.00046013
[5] Cardet JC, Ash S, Kusa T, et al. Insulin resistance modifies the association between obesity and current asthma in adults. Eur Respir J, 2016; 48, 40310. doi:  10.1183/13993003.00246-2016
[6] Yang G, Han YY, Forno E, et al. Glycated hemoglobin A1c, lung function, and hospitalizations among adults with Asthma. J Allergy Clin Immunol Pract, 2020; 8, 3409-15. e1.
[7] Peters MC, Mauger D, Ross KR, et al. Evidence for exacerbation-prone asthma and predictive biomarkers of exacerbation frequency. Am J Respir Crit Care Med, 2020; 202, 97382. doi:  10.1164/rccm.201909-1813OC
[8] Rastogi D, Fraser S, Oh J, et al. Inflammation, metabolic dysregulation, and pulmonary function among obese urban adolescents with asthma. Am J Respir Crit Care Med, 2015; 191, 14960. doi:  10.1164/rccm.201409-1587OC
[9] Kankaanranta H, Kauppi P, Tuomisto LE, et al. Emerging comorbidities in adult asthma: risks, clinical associations, and mechanisms. Mediators Inflamm, 2016; 2016, 3690628.
[10] Zhang P, Lopez R, Attaway AH, et al. Diabetes mellitus is associated with worse outcome in patients hospitalized for Asthma. J Allergy Clin Immunol Pract, 2021; 9, 1562-69. e1.
[11] Rayner L, McGovern A, Creagh-Brown B, et al. Type 2 diabetes and asthma: systematic review of the bidirectional relationship. Curr Diabetes Rev, 2019; 15, 11826. doi:  10.2174/1573399814666180711114859
[12] Van Ruiten CC, Smits MM, Kok MD, et al. Mechanisms underlying the blood pressure lowering effects of dapagliflozin, exenatide, and their combination in people with type 2 diabetes: a secondary analysis of a randomized trial. Cardiovasc Diabetol, 2022; 21, 63. doi:  10.1186/s12933-022-01492-x
[13] Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in Type 2 diabetes. N Engl J Med, 2016; 375, 31122. doi:  10.1056/NEJMoa1603827
[14] Finan B, Ma T, Ottaway N, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med, 2013; 5, 209ra151.
[15] Chow E, Chan JCN. The emerging role of incretins and twincretins. Nat Rev Endocrinol, 2022; 18, 734. doi:  10.1038/s41574-021-00607-w
[16] Coskun T, Urva S, Roell WC, et al. LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: From discovery to clinical proof of concept. Cell Metab, 2022; 34, 1234-47. e9.
[17] Foer D, Beeler PE, Cui J, et al. Asthma exacerbations in patients with type 2 diabetes and asthma on glucagon-like peptide-1 receptor agonists. Am J Respir Crit Care Med, 2021; 203, 83140. doi:  10.1164/rccm.202004-0993OC
[18] Toki S, Zhang J, Printz RL, et al. Dual GIPR and GLP-1R agonist tirzepatide inhibits aeroallergen-induced allergic airway inflammation in mouse model of obese asthma. Clin Exp Allergy, 2023; 53, 21621. doi:  10.1111/cea.14252
[19] Wang AH, Tang HL, Zhang N, et al. Association between novel glucose-lowering drugs and risk of Asthma: a network meta-analysis of cardiorenal outcome trials. Diabetes Res Clin Pract, 2022; 183, 109080. doi:  10.1016/j.diabres.2021.109080
[20] Higgins J, Thomas J. Cochrane handbook for systematic reviews of interventions. https://training.cochrane.org/handbook/current. [2023-10-17].
[21] Khan F, Mat A, Hogan AE, et al. Preliminary asthma-related outcomes following glucagon-like peptide 1 agonist therapy. QJM Mon J Assoc Physicians, 2017; 110, 8534. doi:  10.1093/qjmed/hcx125
[22] Koskela HO, Salonen PH, Niskanen L. Hyperglycaemia during exacerbations of asthma and chronic obstructive pulmonary disease. Clin Respir J, 2013; 7, 3829. doi:  10.1111/crj.12020
[23] Kosmalski M, Różycka-Kosmalska M, Witusik A, et al. The coincidence of diabetes mellitus and asthma, their probable causal relationships and therapeutic opportunities. Adv Respir Med, 2020; 88, 5908. doi:  10.5603/ARM.a2020.0168
[24] Cazzola M, Calzetta L, Rogliani P, et al. High glucose enhances responsiveness of human airways smooth muscle via the Rho/ROCK pathway. Am J Respir Cell Mol Biol, 2012; 47, 50916. doi:  10.1165/rcmb.2011-0449OC
[25] Thomsen SF, Duffy DL, Kyvik KO, et al. Risk of asthma in adult twins with type 2 diabetes and increased body mass index. Allergy, 2011; 66, 5628. doi:  10.1111/j.1398-9995.2010.02504.x
[26] Toki S, Goleniewska K, Reiss S, et al. Glucagon-like peptide 1 signaling inhibits allergen-induced lung IL-33 release and reduces group 2 innate lymphoid cell cytokine production in vivo. J Allergy Clin Immunol, 2018; 142, 1515-28. e8.
[27] Delgado J, Barranco P, Quirce S. Obesity and asthma. J Investig Allergol Clin Immunol, 2008; 18, 4205.
[28] Beuther DA. Recent insight into obesity and asthma. Curr Opin Pulm Med, 2010; 16, 6470. doi:  10.1097/MCP.0b013e3283338fa7
[29] Thuesen BH, Husemoen LLN, Hersoug LG, et al. Insulin resistance as a predictor of incident asthma-like symptoms in adults. Clin Exp Allergy J Br Soc Allergy Clin Immunol, 2009; 39, 7007. doi:  10.1111/j.1365-2222.2008.03197.x
[30] Beuther DA, Sutherland ER. Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies. Am J Respir Crit Care Med, 2007; 175, 6616. doi:  10.1164/rccm.200611-1717OC
[31] Hjellvik V, Tverdal A, Furu K. Body mass index as predictor for asthma: a cohort study of 118, 723 males and females. Eur Respir J, 2010; 35, 123542. doi:  10.1183/09031936.00192408
[32] Wang L, Wang KS, Gao X, et al. Sex difference in the association between obesity and asthma in U. S. adults: Findings from a national study. Respir Med, 2015; 109, 95562. doi:  10.1016/j.rmed.2015.06.001
[33] Assad N, Qualls C, Smith LJ, et al. Body mass index is a stronger predictor than the metabolic syndrome for future asthma in women. The longitudinal CARDIA study. Am J Respir Crit Care Med, 2013; 188, 31926. doi:  10.1164/rccm.201303-0457OC
[34] Brumpton B, Langhammer A, Romundstad P, et al. General and abdominal obesity and incident asthma in adults: the HUNT study. Eur Respir J, 2013; 41, 3239. doi:  10.1183/09031936.00012112
[35] Grasemann H, Holguin F. Oxidative stress and obesity-related asthma. Paediatr Respir Rev, 2021; 37, 1821.
[36] Hasegawa K, Tsugawa Y, Chang Y, et al. Risk of an asthma exacerbation after bariatric surgery in adults. J Allergy Clin Immunol, 2015; 136, 288-94. e8.
[37] Toki S, Newcomb DC, Printz RL, et al. Glucagon-like peptide-1 receptor agonist inhibits aeroallergen-induced activation of ILC2 and neutrophilic airway inflammation in obese mice. Allergy, 2021; 76, 343345. doi:  10.1111/all.14879
[38] Zhang Y, Zhou H, Wu WB, et al. Liraglutide protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury through the suppression of the SR-Ca2+-XO-ROS axis via activation of the GLP-1R/PI3K/Akt/survivin pathways. Free Radic Biol Med, 2016; 95, 27892. doi:  10.1016/j.freeradbiomed.2016.03.035
[39] Chen J, Xie JJ, Shi KS, et al. Glucagon-like peptide-1 receptor regulates endoplasmic reticulum stress-induced apoptosis and the associated inflammatory response in chondrocytes and the progression of osteoarthritis in rat. Cell Death Dis, 2018; 9, 212. doi:  10.1038/s41419-017-0217-y
[40] Richter G, Feddersen O, Wagner U, et al. GLP-1 stimulates secretion of macromolecules from airways and relaxes pulmonary artery. Am J Physiol, 1993; 265, L37481.
[41] Shiraishi D, Fujiwara Y, Komohara Y, et al. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation. Biochem Biophys Res Commun, 2012; 425, 3048. doi:  10.1016/j.bbrc.2012.07.086
[42] Wootten D, Reynolds CA, Smith KJ, et al. The extracellular surface of the GLP-1 receptor is a molecular trigger for biased agonism. Cell, 2016; 165, 163243. doi:  10.1016/j.cell.2016.05.023
[43] Zhu T, Wu XL, Zhang W, et al. Glucagon like Peptide-1 (GLP-1) modulates OVA-induced airway inflammation and mucus secretion involving a protein Kinase A (PKA)-dependent nuclear Factor-κB (NF-κB) signaling pathway in mice. Int J Mol Sci, 2015; 16, 20195211. doi:  10.3390/ijms160920195
[44] Bullock BP, Heller RS, Habener JF. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology, 1996; 137, 296878. doi:  10.1210/endo.137.7.8770921
[45] Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab, 2018; 27, 74056. doi:  10.1016/j.cmet.2018.03.001
[46] Billington CK, Ojo OO, Penn RB, et al. cAMP regulation of airway smooth muscle function. Pulm Pharmacol Ther, 2013; 26, 11220. doi:  10.1016/j.pupt.2012.05.007
[47] Kim HK, Lee GH, Bhattarai KR, et al. PI3Kδ contributes to ER stress-associated asthma through ER-redox disturbances: the involvement of the RIDD-RIG-I-NF-κB axis. Exp Mol Med, 2018; 50, e444. doi:  10.1038/emm.2017.270
[48] Hsu HS, Liu CC, Lin JH, et al. Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis. Sci Rep, 2017; 7, 14272. doi:  10.1038/s41598-017-14612-5
[49] Michaeloudes C, Abubakar-Waziri H, Lakhdar R, et al. Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med, 2022; 85, 101026. doi:  10.1016/j.mam.2021.101026
[50] Nguyen DV, Linderholm A, Haczku A, et al. Glucagon-like peptide 1: A potential anti-inflammatory pathway in obesity-related asthma. Pharmacol Ther, 2017; 180, 139143. doi:  10.1016/j.pharmthera.2017.06.012
[51] Zimmermann N, Rothenberg ME. The arginine-arginase balance in asthma and lung inflammation. Eur J Pharmacol, 2006; 533, 25362. doi:  10.1016/j.ejphar.2005.12.047
[52] Rogliani P, Calzetta L, Capuani B, et al. Glucagon-like peptide 1 receptor: a novel pharmacological target for treating human bronchial hyperresponsiveness. Am J Respir Cell Mol Biol, 2016; 55, 80414. doi:  10.1165/rcmb.2015-0311OC
[53] de Vries JE. The role of IL-13 and its receptor in allergy and inflammatory responses. J Allergy Clin Immunol, 1998; 102, 1659. doi:  10.1016/S0091-6749(98)70080-6
[54] Bloodworth MH, Rusznak M, Pfister CC, et al. Glucagon-like peptide 1 receptor signaling attenuates respiratory syncytial virus-induced type 2 responses and immunopathology. J Allergy Clin Immunol, 2018; 142, 683-7. e12.
[55] Wei JP, Yang CL, Leng WH, et al. Use of GLP1RAs and occurrence of respiratory disorders: A meta-analysis of large randomized trials of GLP1RAs. Clin Respir J, 2021; 15, 84750. doi:  10.1111/crj.13372