[1] Pyzik A, Grywalska E, Matyjaszek-Matuszek B, et al. Immune disorders in Hashimoto's thyroiditis: what do we know so far? J Immunol Res, 2015; 2015, 979167.
[2] Antonelli A, Ferrari SM, Corrado A, et al. Autoimmune thyroid disorders. Autoimmun Rev, 2015; 14, 174−80. doi:  10.1016/j.autrev.2014.10.016
[3] Bulow Pedersen I, Knudsen N, Jørgensen T, et al. Large differences in incidences of overt hyper- and hypothyroidism associated with a small difference in iodine intake: a prospective comparative register-based population survey. J Clin Endocrinol Metab, 2002; 87, 4462−9. doi:  10.1210/jc.2002-020750
[4] Ragusa F, Fallahi P, Elia G, et al. Hashimotos' thyroiditis: epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab, 2019; 33, 101367. doi:  10.1016/j.beem.2019.101367
[5] Zama SY, Ahmed M, Vadiraja N. Prevalence of Goitre in school children of chamarajanagar district, Karnataka, India. J Clin Diagn Res, 2013; 7, 2807-9.
[6] Mitka M. Even mild iodine deficiency during gestation may impair brain function in children. JAMA, 2013; 309, 2428.
[7] Liu LX, Wang DD, Liu P, et al. The relationship between iodine nutrition and thyroid disease in lactating women with different iodine intakes. Br J Nutr, 2015; 114, 1487−95. doi:  10.1017/S0007114515003128
[8] Du Y, Gao YH, Meng FG, et al. Iodine deficiency and excess coexist in China and induce thyroid dysfunction and disease: a cross-sectional study. PLoS One, 2014; 9, e111937. doi:  10.1371/journal.pone.0111937
[9] Teng WP, Shan ZY, Teng XC, et al. Effect of iodine intake on thyroid diseases in China. N Engl J Med, 2006; 354, 2783−93. doi:  10.1056/NEJMoa054022
[10] Palaniappan S, Shanmughavelu L, Prasad HK, et al. Improving iodine nutritional status and increasing prevalence of autoimmune thyroiditis in children. Indian J Endocrinol Metab, 2017; 21, 85−9. doi:  10.4103/2230-8210.195996
[11] Ajjan RA, Weetman AP. The pathogenesis of Hashimoto's thyroiditis: further developments in our understanding. Horm Metab Res, 2015; 47, 702−10. doi:  10.1055/s-0035-1548832
[12] Gianchecchi E, Delfino DV, Fierabracci A. NK cells in autoimmune diseases: linking innate and adaptive immune responses. Autoimmun Rev, 2018; 17, 142−54. doi:  10.1016/j.autrev.2017.11.018
[13] Zhang C, Tian ZG. NK cell subsets in autoimmune diseases. J Autoimmun, 2017; 83, 22−30. doi:  10.1016/j.jaut.2017.02.005
[14] Jie HB, Sarvetnick N. The role of NK cells and NK cell receptors in autoimmune disease. Autoimmunity, 2004; 37, 147−53. doi:  10.1080/0891693042000196174
[15] Wenzel BE, Chow A, Baur R, et al. Natural killer cell activity in patients with Graves' disease and Hashimoto's thyroiditis. Thyroid, 1998; 8, 1019−22. doi:  10.1089/thy.1998.8.1019
[16] Solerte SB, Precerutti S, Gazzaruso C, et al. Defect of a subpopulation of natural killer immune cells in Graves' disease and Hashimoto's thyroiditis: normalizing effect of dehydroepiandrosterone sulfate. Eur J Endocrinol, 2005; 152, 703−12. doi:  10.1530/eje.1.01906
[17] Wang B, Shao XQ, Song RH, et al. The emerging role of epigenetics in autoimmune thyroid diseases. Front Immunol, 2017; 8, 396.
[18] Mazzone R, Zwergel C, Artico M, et al. The emerging role of epigenetics in human autoimmune disorders. Clin Epigenetics, 2019; 11, 34. doi:  10.1186/s13148-019-0632-2
[19] Hewagama A, Richardson B. The genetics and epigenetics of autoimmune diseases. J Autoimmun, 2009; 33, 3−11. doi:  10.1016/j.jaut.2009.03.007
[20] Cai TT, Muhali FS, Song RH, et al. Genome-wide DNA methylation analysis in Graves' disease. Genomics, 2015; 105, 204−10. doi:  10.1016/j.ygeno.2015.01.001
[21] Kim YI. Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. J Nutr, 2005; 135, 2703−9. doi:  10.1093/jn/135.11.2703
[22] Cao JX, Zhang HP, Du LX. Influence of environmental factors on DNA methylation. Hereditas, 2013; 35, 839−46. (In Chinese)
[23] Kwabi-Addo B, Chung W, Shen LL, et al. Age-related DNA methylation changes in normal human prostate tissues. Clin Cancer Res, 2007; 13, 3796−802. doi:  10.1158/1078-0432.CCR-07-0085
[24] Kang GH, Lee S, Kim JS, et al. Profile of aberrant CpG island methylation along the multistep pathway of gastric carcinogenesis. Lab Invest, 2003; 83, 635−41. doi:  10.1097/01.LAB.0000067481.08984.3F
[25] Liu TT, Sun J, Wang ZJ, et al. Changes in the DNA methylation and hydroxymethylation status of the intercellular adhesion molecule 1 gene promoter in Thyrocytes from autoimmune thyroiditis patients. Thyroid, 2017; 27, 838−45. doi:  10.1089/thy.2016.0576
[26] Shen HM, Liu P, Jia QZ, et al. Definition and demarcation of iodine deficient areas and iodine adequate areas (WS/T 669-2020). Beijing: Standards Press of China, 2020. (In Chinese)
[27] Jia QZ, Zhang XD, Shen HM, et al. Definition and demarcation of water-borne iodine-excess areas and iodine-excess endemial areas (GB/T 19380-2016). Beijing: Standards Press of China, 2016. (In Chinese)
[28] Wan SY, Qu MY, Wu HY, et al. Autoimmune thyroid diseases after 25 years of universal salt iodisation: an epidemiological study of Chinese adults in areas with different water iodine levels. Br J Nutr, 2020; 124, 853−64. doi:  10.1017/S0007114520001786
[29] Zhang YP, Yan YQ, Liu LJ, et al. Determination of iodine in urine—Part 1: As3+-Ce4+ catalytic spectrophotometry (WS/T 107.1-2016). Beijing: Standards Press of China, 2016. (In Chinese)
[30] Zhang YP, Li WD, Huang SY, et al. Determination of iodine in serum-inductively coupled plasma mass spectrometry (WS/T 783-2021). Beijing: Standards Press of China, 2021. (In Chinese)
[31] Zhang C, Wang XM, Li SR, et al. NKG2A is a NK cell exhaustion checkpoint for HCV persistence. Nat Commun, 2019; 10, 1507. doi:  10.1038/s41467-019-09212-y
[32] Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 2012; 13, 484−92. doi:  10.1038/nrg3230
[33] Ortega-Rodríguez AC, Martínez-Hernández R, Monsiváis-Urenda A, et al. Quantitative and functional analysis of PD-1+ NK cells in patients with autoimmune thyroid disease. J Clin Endocrinol Metab, 2020; 105, dgaa569. doi:  10.1210/clinem/dgz084
[34] Orbelyan GA, Tang FM, Sally B, et al. Human NKG2E is expressed and forms an intracytoplasmic complex with CD94 and DAP12. J Immunol, 2014; 193, 610−6. doi:  10.4049/jimmunol.1400556
[35] Smith J, Sen S, Weeks RJ, et al. Promoter DNA Hypermethylation and paradoxical gene activation. Trends Cancer, 2020; 6, 392−406. doi:  10.1016/j.trecan.2020.02.007
[36] Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol, 2018; 19, 621−37. doi:  10.1038/s41580-018-0028-8
[37] Vecellio M, Wu HJ, Lu QJ, et al. The multifaceted functional role of DNA methylation in immune-mediated rheumatic diseases. Clin Rheumatol, 2021; 40, 459−76. doi:  10.1007/s10067-020-05255-5
[38] Taha M, Nezerwa E, Nam HJ. The X-ray crystallographic structure of human EAT2 (SH2D1B). Protein Pept Lett, 2016; 23, 862−6. doi:  10.2174/0929866523666160831162239
[39] Aldhamen YA, Appledorn DM, Seregin SS, et al. Expression of the SLAM family of receptors adapter EAT-2 as a novel strategy for enhancing beneficial immune responses to vaccine antigens. J Immunol, 2011; 186, 722−32. doi:  10.4049/jimmunol.1002105
[40] Roncagalli R, Taylor JER, Zhang SH, et al. Negative regulation of natural killer cell function by EAT-2, a SAP-related adaptor. Nat Immunol, 2005; 6, 1002−10. doi:  10.1038/ni1242
[41] Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol, 2016; 16, 626−38. doi:  10.1038/nri.2016.90
[42] Dong YH, Fu DG. Autoimmune thyroid disease: mechanism, genetics and current knowledge. Eur Rev Med Pharmacol Sci, 2014; 18, 3611−8.
[43] Ma RQ, Yan MQ, Han P, et al. Deficiency and excess of groundwater iodine and their health associations. Nat Commun, 2022; 13, 7354. doi:  10.1038/s41467-022-35042-6
[44] Zois C, Stavrou I, Kalogera C, et al. High prevalence of autoimmune thyroiditis in schoolchildren after elimination of iodine deficiency in northwestern Greece. Thyroid, 2003; 13, 485−9. doi:  10.1089/105072503322021151