[1] Richman DD, Margolis DM, Delaney M, et al. The challenge of finding a cure for HIV infection. Science, 2009; 323, 1304-7. doi:  10.1126/science.1165706
[2] Gebo KA, Fleishman JA, Conviser R, et al. Contemporary costs of HIV healthcare in the HAART era. AIDS, 2010; 24, 2705-15. doi:  10.1097/QAD.0b013e32833f3c14
[3] Zeller SJ, Kumar P. RNA-based gene therapy for the treatment and prevention of HIV:from bench to bedside. Yale J Biol Med, 2011; 84, 301-9. doi:  10.1007/s10096-014-2173-0
[4] Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA, 2014; 111, 11461-6. doi:  10.1073/pnas.1405186111
[5] Lehrman S. Virus treatment questioned after gene therapy death. Nature, 1999; 401, 517-8. https://repository.library.georgetown.edu/handle/10822/516785
[6] Pack DW, Hoffman AS, Pun S, et al. Design and development of polymers for gene delivery. Nat Rev Drug Discov, 2005; 4, 581-93. doi:  10.1038/nrd1775
[7] Allen TM, Cullis PR. Liposomal drug delivery systems:from concept to clinical applications. Adv Drug Deliv Rev, 2013; 65, 36-48. doi:  10.1016/j.addr.2012.09.037
[8] Shukla RS, Qin B, Cheng K. Peptides Used in the Delivery of Small Noncoding RNA. Molecular Pharmaceutics, 2014; 11, 3395-408. doi:  10.1021/mp500426r
[9] Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol, 2009; 9, 581-93. doi:  10.1038/nri2567
[10] van der Pol E, Boing AN, Harrison P, et al. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev, 2012; 64, 676-705. doi:  10.1124/pr.112.005983
[11] Thery C. Exosomes:secreted vesicles and intercellular communications. F1000 Biol Rep, 2011; 3, 15. http://www.oalib.com/references/10562220
[12] Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 2007; 9, 654-9. doi:  10.1038/ncb1596
[13] Zomer A, Vendrig T, Hopmans ES, et al. Exosomes:Fit to deliver small RNA. Commun Integr Biol, 2010; 3, 447-50. doi:  10.4161/cib.3.5.12339
[14] Strayer DS, Akkina R, Bunnell BA, et al. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther, 2005; 11, 823-42. doi:  10.1016/j.ymthe.2005.01.020
[15] Scarborough RJ, Gatignol A. HIV and Ribozymes. Adv Exp Med Biol, 2015; 848, 97-116. doi:  10.1007/978-1-4939-2432-5
[16] Herrera-Carrillo E, Berkhout B. Gene therapy strategies to block HIV-1 replication by RNA interference. Adv Exp Med Biol, 2015; 848, 71-95. doi:  10.1007/978-1-4939-2432-5
[17] Sun B, Yang R, Mallardo M. Roles of microRNAs in HIV-1 Replication and Latency. Microrna, 2016; 5, 120-3. doi:  10.2174/2211536605666160829123118
[18] Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science, 2013; 339, 823-6. doi:  10.1126/science.1232033
[19] Jinek M, East A, Cheng A, et al. RNA-programmed genome editing in human cells. Elife, 2013; 2, e00471. https://elifesciences.org/articles/00471
[20] Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013; 339, 819-23. doi:  10.1126/science.1231143
[21] Huang Z, Tomitaka A, Raymond A, et al. Current application of CRISPR/Cas9 gene-editing technique to eradication of HIV/AIDS. Gene Ther, 2017; 24, 377-84. doi:  10.1038/gt.2017.35
[22] Burnett JC, Rossi JJ. RNA-based therapeutics:current progress and future prospects. Chem Biol, 2012; 19, 60-71. doi:  10.1016/j.chembiol.2011.12.008
[23] Adesina SK, Akala EO. Nanotechnology Approaches for the Delivery of Exogenous siRNA for HIV Therapy. Mol Pharm, 2015; 12, 4175-87. doi:  10.1021/acs.molpharmaceut.5b00335
[24] Kumar P, Ban HS, Kim SS, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell, 2008; 134, 577-86. doi:  10.1016/j.cell.2008.06.034
[25] Amado RG, Mitsuyasu RT, Rosenblatt JD, et al. Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase Ⅰ study:myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum Gene Ther, 2004; 15, 251-62. doi:  10.1089/104303404322886101
[26] DiGiusto DL. Stem cell gene therapy for HIV:strategies to inhibit viral entry and replication. Curr HIV/AIDS Rep, 2015; 12, 79-87. doi:  10.1007/s11904-014-0242-8
[27] Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity, 2012; 37, 377-88. doi:  10.1016/j.immuni.2012.08.010
[28] Chun TW, Carruth L, Finzi D, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature, 1997; 387, 183-8. doi:  10.1038/387183a0
[29] Marcus ME, Leonard JN. FedExosomes:Engineering Therapeutic Biological Nanoparticles that Truly Deliver. Pharmaceuticals (Basel), 2013; 6, 659-80. doi:  10.3390/ph6050659
[30] Lotvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions:a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles, 2014; 3, 26913. doi:  10.3402/jev.v3.26913
[31] Mathivanan S, Simpson RJ. ExoCarta:A compendium of exosomal proteins and RNA. Proteomics, 2009; 9, 4997-5000. doi:  10.1002/pmic.v9:21
[32] Bellingham SA, Coleman BM, Hill AF. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res, 2012; 40, 10937-49. doi:  10.1093/nar/gks832
[33] Madison MN, Okeoma CM. Exosomes:Implications in HIV-1 Pathogenesis. Viruses, 2015; 7, 4093-118. doi:  10.3390/v7072810
[34] Quah BJ, O'Neill HC. The immunogenicity of dendritic cell-derived exosomes. Blood Cells Mol Dis, 2005; 35, 94-110. doi:  10.1016/j.bcmd.2005.05.002
[35] Nazimek K, Ptak W, Nowak B, et al. Macrophages play an essential role in antigen-specific immune suppression mediated by T CD8(+) cell-derived exosomes. Immunology, 2015; 146, 23-32. doi:  10.1111/imm.2015.146.issue-1
[36] Madison MN, Jones PH, Okeoma CM. Exosomes in human semen restrict HIV-1 transmission by vaginal cells and block intravaginal replication of LP-BM5 murine AIDS virus complex. Virology, 2015; 482, 189-201. doi:  10.1016/j.virol.2015.03.040
[37] Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res, 2015; 32, 2003-14. doi:  10.1007/s11095-014-1593-y
[38] Morelli AE, Larregina AT, Shufesky WJ, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood, 2004; 104, 3257-66. doi:  10.1182/blood-2004-03-0824
[39] Feng D, Zhao WL, Ye YY, et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic, 2010; 11, 675-87. doi:  10.1111/j.1600-0854.2010.01041.x
[40] Svensson KJ, Christianson HC, Wittrup A, et al. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem, 2013; 288, 17713-24. doi:  10.1074/jbc.M112.445403
[41] Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol, 2011; 29, 341-5. doi:  10.1038/nbt.1807
[42] Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther, 2011; 19, 1769-79. doi:  10.1038/mt.2011.164
[43] Zhou Y, Zhou G, Tian C, et al. Exosome-mediated small RNA delivery for gene therapy. Wiley Interdiscip Rev RNA, 2016; 7, 758-71. doi:  10.1002/wrna.1363
[44] Witwer KW, Buzas EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles, 2013; 2. doi:  10.3402/jev.v2i0.20360
[45] van der Pol E, Coumans FA, Grootemaat AE, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost, 2014; 12, 1182-92. doi:  10.1111/jth.2014.12.issue-7
[46] Chia BS, Low YP, Wang Q, et al. Advances in exosome quantification techniques. Trac-Trends in Analytical Chemistry, 2017; 86, 93-106. doi:  10.1016/j.trac.2016.10.012
[47] Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release, 2015; 207, 18-30. doi:  10.1016/j.jconrel.2015.03.033
[48] Wahlgren J, De LKT, Brisslert M, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res, 2012; 40, e130. doi:  10.1093/nar/gks463
[49] van der Meel R, Fens MH, Vader P, et al. Extracellular vesicles as drug delivery systems:lessons from the liposome field. J Control Release, 2014; 195, 72-85. doi:  10.1016/j.jconrel.2014.07.049
[50] O'Loughlin AJ, Mager I, de Jong OG, et al. Functional Delivery of Lipid-Conjugated siRNA by Extracellular Vesicles. Mol Ther, 2017; 25, 1580-7. doi:  10.1016/j.ymthe.2017.03.021
[51] Chevillet JR, Kang Q, Ruf IK, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A, 2014; 111, 14888-93. doi:  10.1073/pnas.1408301111
[52] Li Y, Zhang L, Liu F, et al. Identification of endogenous controls for analyzing serum exosomal miRNA in patients with hepatitis B or hepatocellular carcinoma. Dis Markers, 2015; 2015, 893594.
[53] Zhang W, Ni M, Su Y, et al. MicroRNAs in Serum Exosomes as Potential Biomarkers in Clear-cell Renal Cell Carcinoma. Eur Urol Focus, 2016. https://www.sciencedirect.com/science/article/pii/S2405456916301444
[54] Lange T, Stracke S, Rettig R, et al. Identification of miR-16 as an endogenous reference gene for the normalization of urinary exosomal miRNA expression data from CKD patients. PLoS One, 2017; 12, e0183435. doi:  10.1371/journal.pone.0183435
[55] Qazi KR, Gehrmann U, Domange Jordo E, et al. Antigen-loaded exosomes alone induce Th1-type memory through a B-cell-dependent mechanism. Blood, 2009; 113, 2673-83. doi:  10.1182/blood-2008-04-153536
[56] Zhao Y, Haney MJ, Gupta R, et al. GDNF-transfected macrophages produce potent neuroprotective effects in Parkinson's disease mouse model. PLoS One, 2014; 9, e106867. doi:  10.1371/journal.pone.0106867
[57] Yeo RW, Lai RC, Zhang B, et al. Mesenchymal stem cell:an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev, 2013; 65, 336-41. doi:  10.1016/j.addr.2012.07.001
[58] Chen TS, Arslan F, Yin Y, et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med, 2011; 9, 47. doi:  10.1186/1479-5876-9-47
[59] Haney MJ, Zhao Y, Harrison EB, et al. Specific transfection of inflamed brain by macrophages:a new therapeutic strategy for neurodegenerative diseases. PLoS One, 2013; 8, e61852. doi:  10.1371/journal.pone.0061852
[60] Saayman S, Ali SA, Morris KV, et al. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther, 2015; 15, 819-30. doi:  10.1517/14712598.2015.1036736
[61] Yin C, Zhang T, Qu X, et al. In Vivo Excision of HIV-1 Provirus by saCas9 and Multiplex Single-Guide RNAs in Animal Models. Mol Ther, 2017; 25, 1168-86. doi:  10.1016/j.ymthe.2017.03.012
[62] Kaminski R, Bella R, Yin C, et al. Excision of HIV-1 DNA by gene editing:a proof-of-concept in vivo study. Gene Ther, 2016; 23, 696. doi:  10.1038/gt.2016.45
[63] Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther, 2010; 18, 80-6. doi:  10.1038/mt.2009.255
[64] Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015; 520, 186-91. doi:  10.1038/nature14299
[65] Senis E, Fatouros C, Grosse S, et al. CRISPR/Cas9-mediated genome engineering:an adeno-associated viral (AAV) vector toolbox. Biotechnol J, 2014; 9, 1402-12. doi:  10.1002/biot.v9.11
[66] Komor AC, Badran AH, Liu DR. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell, 2017; 169, 559.
[67] Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013; 31, 822-6. doi:  10.1038/nbt.2623
[68] Cho SW, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res, 2014; 24, 132-41. doi:  10.1101/gr.162339.113
[69] Kim SM, Yang Y, Oh SJ, et al. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release, 2017; 266, 8-16. doi:  10.1016/j.jconrel.2017.09.013
[70] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012; 337, 816-21. doi:  10.1126/science.1225829
[71] Lentz TL. Rabies virus binding to an acetylcholine receptor alpha-subunit peptide. J Mol Recognit, 1990; 3, 82-8. doi:  10.1002/(ISSN)1099-1352
[72] Banisadr G, Frederick TJ, Freitag C, et al. The role of CXCR4 signaling in the migration of transplanted oligodendrocyte progenitors into the cerebral white matter. Neurobiol Dis, 2011; 44, 19-27. https://www.sciencedirect.com/science/article/pii/S0969996111001884
[73] Gonzalez-Scarano F, Martin-Garcia J. The neuropathogenesis of AIDS. Nat Rev Immunol, 2005; 5, 69-81. doi:  10.1038/nri1527
[74] Tumne A, Prasad VS, Chen Y, et al. Noncytotoxic suppression of human immunodeficiency virus type 1 transcription by exosomes secreted from CD8+ T cells. J Virol, 2009; 83, 4354-64. doi:  10.1128/JVI.02629-08
[75] Naslund TI, Paquin-Proulx D, Paredes PT, et al. Exosomes from breast milk inhibit HIV-1 infection of dendritic cells and subsequent viral transfer to CD4+ T cells. AIDS, 2014; 28, 171-80. doi:  10.1097/QAD.0000000000000159
[76] Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 2013; 31, 827-32. doi:  10.1038/nbt.2647
[77] Savina A, Fader CM, Damiani MT, et al. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic, 2005; 6, 131-43. doi:  10.1111/j.1600-0854.2004.00257.x
[78] Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol, 2010; 12, 19-30; sup pp 1-13. doi:  10.1038/ncb2000
[79] Perez-Hernandez D, Gutierrez-Vazquez C, Jorge I, et al. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem, 2013; 288, 11649-61. doi:  10.1074/jbc.M112.445304
[80] van Niel G, Charrin S, Simoes S, et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell, 2011; 21, 708-21. doi:  10.1016/j.devcel.2011.08.019
[81] Hoshino D, Kirkbride KC, Costello K, et al. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep, 2013; 5, 1159-68. doi:  10.1016/j.celrep.2013.10.050
[82] Colombo M, Moita C, van Niel G, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci, 2013; 126, 5553-65. doi:  10.1242/jcs.128868
[83] Janas T, Janas MM, Sapon K, et al. Mechanisms of RNA loading into exosomes. FEBS Lett, 2015; 589, 1391-8. doi:  10.1016/j.febslet.2015.04.036
[84] Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release, 2015; 219, 396-405. doi:  10.1016/j.jconrel.2015.07.030
[85] Nordin JZ, Lee Y, Vader P, et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine, 2015; 11, 879-83. doi:  10.1016/j.nano.2015.01.003
[86] Lamparski HG, Metha-Damani A, Yao JY, et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods, 2002; 270, 211-26. doi:  10.1016/S0022-1759(02)00330-7
[87] Ban JJ, Lee M, Im W, et al. Low pH increases the yield of exosome isolation. Biochem Biophys Res Commun, 2015; 461, 76-9. doi:  10.1016/j.bbrc.2015.03.172
[88] Ali SA, Huang MB, Campbell PE, et al. Genetic characterization of HIV type 1 Nef-induced vesicle secretion. AIDS Res Hum Retroviruses, 2010; 26, 173-92. doi:  10.1089/aid.2009.0068
[89] Muratori C, Cavallin LE, Kratzel K, et al. Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe, 2009; 6, 218-30. doi:  10.1016/j.chom.2009.06.009
[90] Mitchell JP, Court J, Mason MD, et al. Increased exosome production from tumour cell cultures using the Integra CELLine Culture System. J Immunol Methods, 2008; 335, 98-105. doi:  10.1016/j.jim.2008.03.001
[91] Hupfeld J, Gorr IH, Schwald C, et al. Modulation of mesenchymal stromal cell characteristics by microcarrier culture in bioreactors. Biotechnol Bioeng, 2014; 111, 2290-302. doi:  10.1002/bit.25281