[1] Arber DA. The 2016 WHO classification of acute myeloid leukemia: what the practicing clinician needs to know. Semin Hematol, 2019; 56, 90−5. doi:  10.1053/j.seminhematol.2018.08.002
[2] Hwang SM. Classification of acute myeloid leukemia. Blood Res, 2020; 55, S1−4. doi:  10.5045/br.2020.S001
[3] Lo-Coco F, Avvisati G, Vignetti M, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med, 2013; 369, 111−21. doi:  10.1056/NEJMoa1300874
[4] Tallman MS, Altman JK. How I treat acute promyelocytic leukemia. Blood, 2009; 114, 5126−35.
[5] Gaillard C, Surianarayanan S, Bentley T, et al. Identification of IRF8 as a potent tumor suppressor in murine acute promyelocytic leukemia. Blood Adv, 2018; 2, 2462−6. doi:  10.1182/bloodadvances.2018018929
[6] Westervelt P, Lane AA, Pollock JL, et al. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARα expression. Blood, 2003; 102, 1857−65. doi:  10.1182/blood-2002-12-3779
[7] Brown D, Kogan S, Lagasse E, et al. A PMLRARα transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA, 1997; 94, 2551−6. doi:  10.1073/pnas.94.6.2551
[8] He LZ, Tribioli C, Rivi R, et al. Acute leukemia with promyelocytic features in PML/RARα transgenic mice. Proc Natl Acad Sci USA, 1997; 94, 5302−7. doi:  10.1073/pnas.94.10.5302
[9] Welch JS, Yuan WL, Ley TJ. PML-RARA can increase hematopoietic self-renewal without causing a myeloproliferative disease in mice. J Clin Invest, 2011; 121, 1636−45. doi:  10.1172/JCI42953
[10] He CC, Luo B, Jiang N, et al. OncomiR or antioncomiR: role of miRNAs in acute myeloid leukemia. Leuk Lymphoma, 2019; 60, 284−94. doi:  10.1080/10428194.2018.1480769
[11] Liu Y, Cheng ZH, Pang YF, et al. Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol, 2019; 12, 51. doi:  10.1186/s13045-019-0734-5
[12] Guo SQ, Bai HT, Megyola CM, et al. Complex oncogene dependence in microRNA-125a-induced myeloproliferative neoplasms. Proc Natl Acad Sci USA, 2012; 109, 16636−41. doi:  10.1073/pnas.1213196109
[13] Sharifi H, Jafari Najaf Abadi MH, Razi E, et al. MicroRNAs and response to therapy in leukemia. J Cell Biochem, 2019; 120, 14233−46. doi:  10.1002/jcb.28892
[14] Liu J, Guo B, Chen Z, et al. miR-125b promotes MLL-AF9-driven murine acute myeloid leukemia involving a VEGFA-mediated non-cell-intrinsic mechanism. Blood, 2017; 129, 1491−502. doi:  10.1182/blood-2016-06-721027
[15] Iacovino M, Bosnakovski D, Fey H, et al. Inducible cassette exchange: a rapid and efficient system enabling conditional gene expression in embryonic stem and primary cells. Stem Cells, 2011; 29, 1580−8. doi:  10.1002/stem.715
[16] He YX, Guo YX, Zhang Y, et al. Ionizing radiation-induced RPL23a reduction regulates apoptosis via RPL11-MDM2-p53 pathway in mouse spermatogonia. Biomed Environ Sci, 2021; 34, 789−802.
[17] Yu XB, Mansouri A, Liu ZD, et al. NRF2 activation induced by PML-RARα promotes microRNA 125b-1 expression and confers resistance to chemotherapy in acute promyelocytic leukemia. Clin Transl Med, 2021; 11, e418.
[18] He JH, Huang ZY, He ML, et al. Circular RNA MAPK4 (circ-MAPK4) inhibits cell apoptosis via MAPK signaling pathway by sponging miR-125a-3p in gliomas. Mol Cancer, 2020; 19, 17. doi:  10.1186/s12943-019-1120-1
[19] Xu XB, Lai YY, Zhou WZ, et al. Lentiviral delivery of a shRNA sequence analogous to miR-4319/miR-125-5p induces apoptosis in NSCLC cells by arresting G2/M phase. Cell Biochem, 2019; 120, 14017−27. doi:  10.1002/jcb.28676
[20] Yao DH, Zhou ZY, Wang PF, et al. MiR-125-5p/IL-6R axis regulates macrophage inflammatory response and intestinal epithelial cell apoptosis in ulcerative colitis through JAK1/STAT3 and NF-κB pathway. Cell Cycle, 2021; 20, 2547−64. doi:  10.1080/15384101.2021.1995128
[21] Gu YZ, Zhao SG, Wan JP, et al. Hsa-miRNA-125b may induce apoptosis of HTR8/SVneo cells by targeting MCL1. Reprod Biol, 2019; 19, 368−73. doi:  10.1016/j.repbio.2019.09.004
[22] Lo YL, Wang CS, Chen YC, et al. Mitochondrion-directed nanoparticles loaded with a natural compound and a microRNA for promoting cancer cell death via the modulation of tumor metabolism and mitochondrial dynamics. Pharmaceutics, 2020; 12, 756. doi:  10.3390/pharmaceutics12080756
[23] Yu CW, Tang WB, Lu R, et al. Human adipose-derived mesenchymal stem cells promote lymphocyte apoptosis and alleviate atherosclerosis via miR-125b-1-3p/BCL11B signal axis. Ann Palliat Med, 2021; 10, 2123−33. doi:  10.21037/apm-21-49
[24] Enomoto Y, Kitaura J, Hatakeyama K, et al. Eμ/miR-125b transgenic mice develop lethal B-cell malignancies. Leukemia, 2011; 25, 1849−56. doi:  10.1038/leu.2011.166
[25] Shi XB, Xue LR, Ma AH, et al. MiR-125b promotes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes. Prostate, 2011; 71, 538−49. doi:  10.1002/pros.21270
[26] Surdziel E, Cabanski M, Dallmann I, et al. Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways. Blood, 2011; 117, 4338−48. doi:  10.1182/blood-2010-06-289058
[27] Wang HJ, Guo YQ, Tan G, et al. MiR-125b regulates side population in breast cancer and confers a chemoresistant phenotype. J Cell Biochem, 2013; 114, 2248−57. doi:  10.1002/jcb.24574
[28] Biamonte F, Battaglia AM, Zolea F, et al. Ferritin heavy subunit enhances apoptosis of non-small cell lung cancer cells through modulation of miR-125b/p53 axis. Cell Death Dis, 2018; 9, 1174. doi:  10.1038/s41419-018-1216-3
[29] Hou PF, Li HL, Yong HM, et al. PinX1 represses renal cancer angiogenesis via the mir-125a-3p/VEGF signaling pathway. Angiogenesis, 2019; 22, 507−19. doi:  10.1007/s10456-019-09675-z
[30] Incoronato M, Grimaldi AM, Mirabelli P, et al. Circulating miRNAs in untreated breast cancer: an exploratory multimodality morpho-functional study. Cancers (Basel), 2019; 11, 876. doi:  10.3390/cancers11060876
[31] Davari N, Ahmadpour F, Kiani AA, et al. Evaluation of microRNA-223 and microRNA-125a expression association with STAT3 and Bcl2 genes in blood leukocytes of CLL patients: a case-control study. BMC Res Notes, 2021; 14, 21. doi:  10.1186/s13104-020-05428-0
[32] Zhang Y, Liu YF, Xu XJ. Knockdown of LncRNA-UCA1 suppresses chemoresistance of pediatric AML by inhibiting glycolysis through the microRNA-125a/hexokinase 2 pathway. J Cell Biochem, 2018; 119, 6296−308. doi:  10.1002/jcb.26899
[33] Nie J, Jiang HC, Zhou YC, et al. MiR-125b regulates the proliferation and metastasis of triple negative breast cancer cells via the Wnt/β-catenin pathway and EMT. Biosci Biotechnol Biochem, 2019; 83, 1062−71. doi:  10.1080/09168451.2019.1584521
[34] El-Khazragy N, Elshimy AA, Hassan SS, et al. Dysregulation of miR-125b predicts poor response to therapy in pediatric acute lymphoblastic leukemia. J Cell Biochem, 2019; 120, 7428−38. doi:  10.1002/jcb.28017
[35] Li GD, So AYL, Sookram R, et al. Casellas R, Baltimore D. Epigenetic silencing of miR-125b is required for normal B-cell development. Blood, 2018; 131, 1920−30.
[36] Fu K, Zhang L, Liu R, et al. MiR-125 inhibited cervical cancer progression by regulating VEGF and PI3K/AKT signaling pathway. World J Surg Oncol, 2020; 18, 115. doi:  10.1186/s12957-020-01881-0
[37] Yang MY, Tang XL, Wang Z, et al. miR-125 inhibits colorectal cancer proliferation and invasion by targeting TAZ. Biosci Rep, 2019; 39, BSR20190193. doi:  10.1042/BSR20190193
[38] Xu LH, Wang JW, Wang Y, et al. Hyperleukocytosis predicts inferior clinical outcome in pediatric acute myeloid leukemia. Hematology, 2020; 25, 507−14. doi:  10.1080/16078454.2020.1859169
[39] Bewersdorf JP, Zeidan AM. Hyperleukocytosis and leukostasis in acute myeloid leukemia: can a better understanding of the underlying molecular pathophysiology lead to novel treatments? Cells, 2020; 9, 2310.
[40] Wang N, Desai A, Ge B, et al. Prognostic value of hypoalbuminemia at diagnosis in de novo non-M3 acute myeloid leukemia. Leuk Lymphoma, 2020; 61, 641−9. doi:  10.1080/10428194.2019.1686499
[41] Jahic A, Iljazovic E, Hasic S, et al. Prognostic parameters of acute myeloid leukaemia at presentation. Med Arch, 2017; 71, 20−4. doi:  10.5455/medarh.2017.71.20-24
[42] Chen X, Wang L, Qu J, et al. Predicting miRNA-disease association based on inductive matrix completion. Bioinformatics, 2018; 34, 4256−65.
[43] Chen X, Xie D, Zhao Q, et al. MicroRNAs and complex diseases: from experimental results to computational models. Brief Bioinform, 2019; 20, 515−39. doi:  10.1093/bib/bbx130
[44] Chen X, Yin J, Qu J, et al. MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction. PLoS Comput Biol, 2018; 14, e1006418. doi:  10.1371/journal.pcbi.1006418
[45] Chen X, Zhu CC, Yin J. Ensemble of decision tree reveals potential miRNA-disease associations. PLoS Comput Biol, 2019; 15, e1007209. doi:  10.1371/journal.pcbi.1007209
[46] Liu DD, Zhong L, Yuan Z, et al. miR-382-5p modulates the ATRA-induced differentiation of acute promyelocytic leukemia by targeting tumor suppressor PTEN. Cell Signal, 2019; 54, 1−9. doi:  10.1016/j.cellsig.2018.11.012
[47] Fu YY, Li LM, Hou JX, et al. miR-139-5p regulates the proliferation of acute promyelocytic leukemia cells by targeting MNT. J Oncol, 2021; 2021, 5522051.
[48] Bai YY, Chen C, Guo XL, et al. miR-638 in circulating leukaemia cells as a non-invasive biomarker in diagnosis, treatment response and MRD surveillance of acute promyelocytic leukaemia. Cancer Biomark, 2020; 29, 125−37. doi:  10.3233/CBM-190899