[1] Agarwal T, Banerjee D, Konwarh R, et al. Recent advances in bioprinting technologies for engineering hepatic tissue. Mater Sci Eng C, 2021; 123, 112013. doi:  10.1016/j.msec.2021.112013
[2] Sk MM, Das P, Panwar A, et al. Synthesis and characterization of site selective photo-crosslinkable glycidyl methacrylate functionalized gelatin-based 3D hydrogel scaffold for liver tissue engineering. Mater Sci Eng C, 2021; 123, 111694. doi:  10.1016/j.msec.2020.111694
[3] Chen AX, Chhabra A, Song HHG, et al. Controlled apoptosis of stromal cells to engineer human microlivers. Adv Funct Mater, 2020; 30, 1910442. doi:  10.1002/adfm.201910442
[4] Furuya K, Zheng YW, Sako D, et al. Enhanced hepatic differentiation in the subpopulation of human amniotic stem cells under 3D multicellular microenvironment. World J Stem Cells, 2019; 11, 705−21. doi:  10.4252/wjsc.v11.i9.705
[5] Bell CC, Lauschke VM, Vorrink SU, et al. Transcriptional, functional, and mechanistic comparisons of stem cell-derived hepatocytes, HepaRG cells, and three-dimensional human hepatocyte spheroids as predictive in vitro systems for drug-induced liver injury. Drug Metab Dispos, 2017; 45, 419−29. doi:  10.1124/dmd.116.074369
[6] Lee JY, Han HJ, Lee SJ, et al. Use of 3D human liver organoids to predict drug-induced phospholipidosis. Int J Mol Sci, 2020; 21, 2982. doi:  10.3390/ijms21082982
[7] Ramaiahgari SC, Den Braver MW, Herpers B, et al. A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol, 2014; 88, 1083−95.
[8] Shah UK, De Oliveira Mallia J, Singh N, et al. Reprint of: a three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies. Mutat Res/Gene Toxicol Environ Mutagen, 2018; 834, 35−41. doi:  10.1016/j.mrgentox.2018.06.020
[9] Breslin S, O'Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today, 2013; 18, 240−9. doi:  10.1016/j.drudis.2012.10.003
[10] Ghosh S, Börsch A, Ghosh S, et al. The transcriptional landscape of a hepatoma cell line grown on scaffolds of extracellular matrix proteins. BMC Genomics, 2021; 22, 238. doi:  10.1186/s12864-021-07532-2
[11] Chen YX, Xie GC, Pan D, et al. Three-dimensional culture of human airway epithelium in Matrigel for evaluation of human rhinovirus C and Bocavirus infections. Biomed Environ Sci, 2018; 31, 136−45.
[12] Curvello R, Alves D, Abud HE, et al. A thermo-responsive collagen-nanocellulose hydrogel for the growth of intestinal organoids. Mater Sci Eng C, 2021; 124, 112051. doi:  10.1016/j.msec.2021.112051
[13] Katoh S, Yoshioka H, Senthilkumar R, et al. Enhanced expression of hyaluronic acid in osteoarthritis-affected knee-cartilage chondrocytes during three-dimensional in vitro culture in a hyaluronic-acid-retaining polymer scaffold. Knee, 2021; 29, 365−73. doi:  10.1016/j.knee.2021.02.019
[14] Singh SP, Schwartz MP, Tokuda EY, et al. A synthetic modular approach for modeling the role of the 3D microenvironment in tumor progression. Sci Rep, 2015; 5, 17814. doi:  10.1038/srep17814
[15] Heidari R, Soheili ZS, Samiei S, et al. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells. Appl Biochem Biotechnol, 2015; 175, 2399−412. doi:  10.1007/s12010-014-1431-z
[16] Zhang X, Morits M, Jonkergouw C, et al. Three-dimensional printed cell culture model based on spherical colloidal lignin particles and cellulose nanofibril-alginate hydrogel. Biomacromolecules, 2020; 21, 1875−85. doi:  10.1021/acs.biomac.9b01745
[17] Guo L, Dial S, Shi LM, et al. Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab Dispos, 2011; 39, 528−38. doi:  10.1124/dmd.110.035873
[18] Sakai Y, Nakazawa K. Technique for the control of spheroid diameter using microfabricated chips. Acta Biomater, 2007; 3, 1033−40. doi:  10.1016/j.actbio.2007.06.004
[19] Taniguchi M, Miyamoto H, Tokunaga A, et al. Evaluation of mRNA expression of drug-metabolizing enzymes in acetaminophen-induced hepatotoxicity using a three-dimensional hepatocyte culture system. Xenobiotica, 2020; 50, 654−62. doi:  10.1080/00498254.2019.1683258
[20] Nakamura K, Kato N, Aizawa K, et al. Expression of albumin and cytochrome P450 enzymes in HepG2 cells cultured with a nanotechnology-based culture plate with microfabricated scaffold. J Toxicol Sci, 2011; 36, 625−33. doi:  10.2131/jts.36.625
[21] Xu JW, Qi GY, Sui CX, et al. 3D h9e peptide hydrogel: an advanced three-dimensional cell culture system for anticancer prescreening of chemopreventive phenolic agents. Toxicol Vitro, 2019; 61, 104599. doi:  10.1016/j.tiv.2019.104599
[22] Meng D, Lei XX, Li Y, et al. Three dimensional polyvinyl alcohol scaffolds modified with collagen for HepG2 cell culture. J Biomater Appl, 2020; 35, 459−70. doi:  10.1177/0885328220933505
[23] Kaynar SÇ, Kaynar ÜH. Method for the determination of polonium-210 in tea samples using response surface methodology (RSM). Nucl Sci Tech, 2019; 30, 45. doi:  10.1007/s41365-019-0567-5
[24] Tabandeh F, Khodabandeh M, Yakhchali B, et al. Response surface methodology for optimizing the induction conditions of recombinant interferon beta during high cell density culture. Chem Eng Sci, 2008; 63, 2477−83. doi:  10.1016/j.ces.2008.02.003
[25] Muhammad U, Lu HD, Wang J, et al. Optimizing the maximum recovery of dihydromyricetin from Chinese vine tea, Ampelopsis grossedentata, using response surface methodology. Molecules, 2017; 22, 2250. doi:  10.3390/molecules22122250
[26] Noi M, Mukaisho KI, Yoshida S, et al. ERK phosphorylation functions in invadopodia formation in tongue cancer cells in a novel silicate fibre-based 3D cell culture system. Int J Oral Sci, 2018; 10, 30. doi:  10.1038/s41368-018-0033-y
[27] Kloxin AM, Kloxin CJ, Bowman CN, et al. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv Mater, 2010; 22, 3484−94. doi:  10.1002/adma.200904179
[28] Xiao M, Qiu J, Kuang R, et al. Synergistic effects of stromal cell-derived factor-1α and bone morphogenetic protein-2 treatment on odontogenic differentiation of human stem cells from apical papilla cultured in the VitroGel 3D system. Cell Tissue Res, 2019; 378, 207−20. doi:  10.1007/s00441-019-03045-3
[29] Huch M, Koo BK. Modeling mouse and human development using organoid cultures. Development, 2015; 142, 3113−25. doi:  10.1242/dev.118570
[30] Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol, 2018; 9, 6. doi:  10.3389/fphar.2018.00006