[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021; 71, 209−49. doi:  10.3322/caac.21660
[2] Liang GH, Cao WQ, Tang DS, et al. Nanomedomics. ACS Nano, 2024; 18, 10979−1024. doi:  10.1021/acsnano.3c11154
[3] Guo H, Hou YC, Wang CX, et al. How to optimize the immune checkpoint blockade therapy for cancers? Oncologie, 2024; 26, 343-8.
[4] Epstein JB, Thariat J, Bensadoun RJ, et al. Oral complications of cancer and cancer therapy: from cancer treatment to survivorship. CA Cancer J Clin, 2012; 62, 400−22. doi:  10.3322/caac.21157
[5] Zhang Q, Hou D, Wen XY, et al. Gold nanomaterials for oral cancer diagnosis and therapy: advances, challenges, and prospects. Mater Today Bio, 2022; 15, 100333. doi:  10.1016/j.mtbio.2022.100333
[6] Li JJ, Gupta S, Li C. Research perspectives: Gold nanoparticles in cancer theranostics. Quant Imaging Med Surg, 2013; 3, 284−91.
[7] Camerin M, Rello S, Villanueva A, et al. Photothermal sensitisation as a novel therapeutic approach for tumours: studies at the cellular and animal level. Eur J Cancer, 2005; 41, 1203−12. doi:  10.1016/j.ejca.2005.02.021
[8] Camerin M, Rodgers MAJ, Kenney ME, et al. Photothermal sensitisation: evidence for the lack of oxygen effect on the photosensitising activity. Photochem Photobiol Sci, 2005; 4, 251−3. doi:  10.1039/b416418k
[9] He XM, Bischof JC. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit Rev Biomed Eng, 2003; 31, 355−422. doi:  10.1615/CritRevBiomedEng.v31.i56.10
[10] Chen XJ, Zhang XQ, Liu Q, et al. Nanotechnology: a promising method for oral cancer detection and diagnosis. J Nanobiotechnology, 2018; 16, 52. doi:  10.1186/s12951-018-0378-6
[11] Melamed JR, Edelstein RS, Day ES. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano, 2015; 9, 6−11. doi:  10.1021/acsnano.5b00021
[12] Lei HL, Pei ZF, Jiang CY, et al. Recent progress of metal-based nanomaterials with anti-tumor biological effects for enhanced cancer therapy. Exploration, 2023; 3, 20220001. doi:  10.1002/EXP.20220001
[13] Xue XD, Qu HJ, Li YP. Stimuli-responsive crosslinked nanomedicine for cancer treatment. Exploration, 2022; 2, 20210134. doi:  10.1002/EXP.20210134
[14] Sun JY, Li JY, Li X, et al. Sequentially responsive size reduction and drug release of core-satellite nanoparticles to enhance tumor penetration and effective tumor suppression. Chin Chem Lett, 2023; 34, 107891. doi:  10.1016/j.cclet.2022.107891
[15] Hu HH, Zhang Z, Fang YF, et al. Therapeutic poly(amino acid)s as drug carriers for cancer therapy. Chin Chem Lett, 2023; 34, 107953. doi:  10.1016/j.cclet.2022.107953
[16] Zhang LP, Yang JZ, Huang J, et al. Development of tumor-evolution-targeted anticancer therapeutic nanomedicineEVT. Chem, 2024; 10, 1337−56. doi:  10.1016/j.chempr.2023.12.019
[17] Park S, Cho E, Chueng STD, et al. Aptameric fluorescent biosensors for liver cancer diagnosis. Biosensors, 2023; 13, 617. doi:  10.3390/bios13060617
[18] Wang ZH, Sun X, Huang T, et al. A sandwich nanostructure of gold nanoparticle coated reduced graphene oxide for photoacoustic imaging-guided photothermal therapy in the second NIR window. Front Bioeng Biotechnol, 2020; 8, 655. doi:  10.3389/fbioe.2020.00655
[19] Zhou RL, Zhang MG, Xi JH, et al. Gold nanorods-based photothermal therapy: interactions between biostructure, nanomaterial, and near-infrared irradiation. Nanoscale Res Lett, 2022; 17, 68. doi:  10.1186/s11671-022-03706-3
[20] Dai ZY, Tan Y, He K, et al. Strict DNA valence control in ultrasmall thiolate-protected near-infrared-emitting gold nanoparticles. J Am Chem Soc, 2020; 142, 14023−7. doi:  10.1021/jacs.0c00443
[21] Wang JW, Zhang CY, Liu Z, et al. Target-triggered nanomaterial self-assembly induced electromagnetic hot-spot generation for SERS-fluorescence dual-mode in situ monitoring MiRNA-guided phototherapy. Anal Chem, 2021; 93, 13755−64. doi:  10.1021/acs.analchem.1c01338
[22] Gu QF, Zhang YH, Cao HH, et al. Transfer of thiolated DNA staples from DNA origami nanostructures to self-assembled monolayer-passivated gold surfaces: implications for interfacial molecular recognition. ACS Appl Nano Mater, 2021; 4, 8429−36. doi:  10.1021/acsanm.1c01685
[23] Duan QQ, Yang M, Zhang BY, et al. Gold nanoclusters modified mesoporous silica coated gold nanorods: enhanced photothermal properties and fluorescence imaging. J Photochem Photobiol B Biol, 2021; 215, 112111. doi:  10.1016/j.jphotobiol.2020.112111
[24] Liu XY, Wang JQ, Ashby CR Jr, et al. Gold nanoparticles: synthesis, physiochemical proper-ties and therapeutic applications in cancer. Drug Discov Today, 2021; 26, 1284−92. doi:  10.1016/j.drudis.2021.01.030
[25] Ge RL, Yan PN, Liu Y, et al. Recent advances and clinical potential of near infrared photothermal conversion materials for photothermal hepatocellular carcinoma therapy. Adv Funct Mater, 2023; 33, 2301138. doi:  10.1002/adfm.202301138
[26] Cheng Y, Bao DD, Chen XJ, et al. Microwave-triggered/HSP-targeted gold nano-system for triple-negative breast cancer photothermal therapy. Int J Pharm, 2021; 593, 120162. doi:  10.1016/j.ijpharm.2020.120162
[27] Ding ZF, Sigdel K, Yang L, et al. Nanotechnology-based drug delivery systems for enhanced diagnosis and therapy of oral cancer. J Mater Chem B, 2020; 8, 8781−93. doi:  10.1039/D0TB00957A
[28] Shan XZ, Zhao ZQ, Wang C, et al. Emerging prodrug-engineered nanomedicines for synergistic chemo-phototherapy. Chem Eng J, 2022; 442, 136383. doi:  10.1016/j.cej.2022.136383
[29] Liu MT, Ma WJ, Zhao D, et al. Enhanced penetrability of a tetrahedral framework nucleic acid by modification with iRGD for DOX-targeted delivery to triple-negative breast cancer. ACS Appl Mater Interfaces, 2021; 13, 25825−35. doi:  10.1021/acsami.1c07297
[30] Vázquez-González M, Willner I. Aptamer-functionalized micro- and nanocarriers for controlled release. ACS Appl Mater Interfaces, 2021; 13, 9520−41. doi:  10.1021/acsami.0c17121
[31] Yan JQ, Zhan XH, Zhang ZZ, et al. Tetrahedral DNA nanostructures for effective treatment of cancer: advances and prospects. J Nanobiotechnology, 2021; 19, 412. doi:  10.1186/s12951-021-01164-0
[32] Madkour M, Aboelenin MM, Younis E, et al. Hepatic acute-phase response, antioxidant biomarkers and DNA fragmentation of two rabbit breeds subjected to acute heat stress. Ital J Anim Sci, 2020; 19, 1568−76. doi:  10.1080/1828051X.2020.1861993
[33] Kara M, Oztas E. Endoplasmic reticulum stress-mediated cell death. In: Gali-Muhtasib H, Rahal O N. Programmed Cell Death. IntechOpen. 2020, 1-14.
[34] Yao F, Jin Z, Zheng ZH, et al. HDAC11 promotes both NLRP3/caspase-1/GSDMD and caspase-3/GSDME pathways causing pyroptosis via ERG in vascular endothelial cells. Cell Death Discov, 2022; 8, 112.
[35] Spitz AZ, Gavathiotis E. Physiological and pharmacological modulation of BAX. Trends Pharmacol Sci, 2022; 43, 206−20. doi:  10.1016/j.tips.2021.11.001
[36] Linder A, Bauernfried S, Cheng YM, et al. CARD8 inflammasome activation triggers pyroptosis in human T cells. EMBO J, 2020; 39, e105071. doi:  10.15252/embj.2020105071
[37] Hao W, Xu JS, Li YH, et al. Tetrahedral DNA nanostructure-modified gold nanorod-based anticancer nanomaterials for combined photothermal therapy and chemotherapy. Biomed Environ Sci, 2022; 35, 1115−25.
[38] Zhao LY, Liu YM, Xing RR, et al. Supramolecular photothermal effects: a promising mechanism for efficient thermal conversion. Angew Chem, 2020; 132, 3821−9. doi:  10.1002/ange.201909825
[39] Cui XM, Ruan QF, Zhuo XL, et al. Photothermal nanomaterials: a powerful light-to-heat converter. Chem Rev, 2023; 123, 6891−952. doi:  10.1021/acs.chemrev.3c00159
[40] Fu W, Ma L, Ju Y, et al. Therapeutic siCCR2 loaded by tetrahedral framework DNA nanorobotics in therapy for intracranial hemorrhage. Adv Funct Mater, 2021; 31, 2101435. doi:  10.1002/adfm.202101435
[41] Hong SB, Jiang WD, Ding QF, et al. The current progress of tetrahedral DNA nanostructure for antibacterial application and bone tissue regeneration. Int J Nanomedicine, 2023; 3761-80.
[42] Heuer-Jungemann A, Linko V. Engineering inorganic materials with DNA nanostructures. ACS Cent Sci, 2021; 7, 1969−79. doi:  10.1021/acscentsci.1c01272
[43] Lee D, Hong JH. Activated PyK2 and its associated molecules transduce cellular signaling from the cancerous milieu for cancer metastasis. Int J Mol Sci, 2022; 23, 15475. doi:  10.3390/ijms232415475
[44] Gur C, Kandemir O, Kandemir FM. Investigation of the effects of hesperidin administration on abamectin-induced testicular toxicity in rats through oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis, autophagy, and JAK2/STAT3 pathways. Environ Toxicol, 2022; 37, 401−12. doi:  10.1002/tox.23406
[45] Spaas J, Van Veggel L, Schepers M, et al. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci, 2021; 78, 4615−37. doi:  10.1007/s00018-021-03802-0
[46] Qin C, Yang S, Chu YH, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther, 2022; 7, 215. doi:  10.1038/s41392-022-01064-1
[47] Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol, 2020; 17, 395−417. doi:  10.1038/s41571-020-0341-y
[48] Asadi M, Taghizadeh S, Kaviani E, et al. Caspase-3: structure, function, and biotechnological aspects. Biotechnol Appl Biochem, 2022; 69, 1633−45. doi:  10.1002/bab.2233
[49] Anderton H, Wicks IP, Silke J. Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease. Nat Rev Rheumatol, 2020; 16, 496−513. doi:  10.1038/s41584-020-0455-8
[50] Fujimura K, Karasawa T, Komada T, et al. NLRP3 inflammasome-driven IL-1β and IL-18 contribute to lipopolysaccharide-induced septic cardiomyopathy. J Mol Cell Cardiol, 2023; 180, 58−68. doi:  10.1016/j.yjmcc.2023.05.003