[1] Ricklund N, Kierkegaard A, McLachlan MS. An international survey of decabromodiphenyl ethane (deBDethane) and decabromodiphenyl ether (decaBDE) in sewage sludge samples. Chemosphere, 2008; 73, 1799-804. doi:  10.1016/j.chemosphere.2008.08.047
[2] Ricklund N, Kierkegaard A, McLachlan MS, et al. Mass balance of decabromodiphenyl ethane and decabromodiphenyl ether in a WWTP. Chemosphere, 2009; 74, 389-94. doi:  10.1016/j.chemosphere.2008.09.054
[3] Konstantinov A, Arsenault G, Chittim B, et al. Characterization of mass-labeled[13C14]-decabromodiphenylethane and its use as a surrogate standard in the analysis of sewage sludge samples. Chemosphere, 2006; 64, 245-9. doi:  10.1016/j.chemosphere.2005.12.009
[4] Kierkegaard A, Bjorklund J, Friden U. Identification of the flame retardant decabromodiphenyl ethane in the environment. Environ Sci Technol, 2004; 38, 3247-53. doi:  10.1021/es049867d
[5] Gauthier LT, Potter D, Hebert CE, et al. Temporal trends and spatial distribution of non-polybrominated diphenyl ether flame retardants in the eggs of colonial populations of Great Lakes herring gulls. Environ Sci Technol, 2009; 43, 312-7. doi:  10.1021/es801687d
[6] Law K, Halldorson T, Danell R, et al. Bioaccumulation and trophic transfer of some brominated flame retardants in a Lake Winnipeg (Canada) food web. Environ Toxicol Chem, 2006; 25, 2177-86. doi:  10.1897/05-500R.1
[7] Zhang J, Li Y, Wang Y, et al. Spatial distribution and ecological risk of polychlorinated biphenyls in sediments from Qinzhou Bay, Beibu Gulf of South China. Mar Pollut Bull, 2009; 80, 338-43. https://www.sciencedirect.com/science/article/pii/S0025326X13007613
[8] Iqbal M, Syed JH, Breivik K, et al. E-Waste Driven Pollution in Pakistan:The First Evidence of Environmental and Human Exposure to Flame Retardants (FRs) in Karachi City. Environ Sci Technol, 2017; 51, 13895-905. doi:  10.1021/acs.est.7b03159
[9] Cristale J, Aragao Bele TG, Lacorte S, et al. Occurrence and human exposure to brominated and organophosphorus flame retardants via indoor dust in a Brazilian city. Environ Pollut, 2017. https://www.sciencedirect.com/science/article/pii/S0269749117322376
[10] Wang G, Chen H, Du Z, et al. In vivo metabolism of organophosphate flame retardants and distribution of their main metabolites in adult zebrafish. Sci Total Environ, 2017; 590-591, 50-59. https://www.sciencedirect.com/science/article/pii/S0048969717305430
[11] Dunnick JK, Nyska A. Characterization of liver toxicity in F344/N rats and B6C3F1 mice after exposure to a flame retardant containing lower molecular weight polybrominated diphenyl ethers. Exp Toxicol Pathol, 2009; 61, 1-12. doi:  10.1016/j.etp.2008.06.008
[12] Tseng LH, Li MH, Tsai SS, et al. Developmental exposure to decabromodiphenyl ether (PBDE 209):effects on thyroid hormone and hepatic enzyme activity in male mouse offspring. Chemosphere, 2008; 70, 640-7. doi:  10.1016/j.chemosphere.2007.06.078
[13] Noyes PD, Hinton DE, Stapleton HM. Accumulation and Debromination of Decabromodiphenyl Ether (BDE-209) in Juvenile Fathead Minnows (Pimephales promelas) Induces Thyroid Disruption and Liver Alterations. Toxicol Sci, 2011; 122, 265-74. doi:  10.1093/toxsci/kfr105
[14] Curran IH, Liston V, Nunnikhoven A, et al. Toxicologic effects of 28-day dietary exposure to the flame retardant 1, 2-dibromo-4-(1, 2-dibromoethyl)-cyclohexane (TBECH) in F344 rats. Toxicology, 2017; 377, 1-13. doi:  10.1016/j.tox.2016.12.001
[15] Hakk H, Letcher RJ. Metabolism in the toxicokinetics and fate of brominated flame retardants——a review. Environ Int, 2003; 29, 801-28. doi:  10.1016/S0160-4120(03)00109-0
[16] Conley A, Mapes S, Corbin CJ, et al. Structural determinants of aromatase cytochrome p450 inhibition in substrate recognition site-1. Mol Endocrinol, 2002; 16, 1456-68. doi:  10.1210/mend.16.7.0876
[17] Nelson DR, Koymans L, Kamataki T, et al. P450 superfamily:update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 1996; 6, 1-42. doi:  10.1097/00008571-199602000-00002
[18] Gramec Skledar D, Tomasic T, Carino A, et al. New brominated flame retardants and their metabolites as activators of the pregnane X receptor. Toxicol Lett, 2016; 259, 116-23. doi:  10.1016/j.toxlet.2016.08.005
[19] Richardson VM, Staskal DF, Ross DG, et al. Possible mechanisms of thyroid hormone disruption in mice by BDE 47, a major polybrominated diphenyl ether congener. Toxicol Appl Pharmacol, 2008; 226, 244-50. doi:  10.1016/j.taap.2007.09.015
[20] Sun RB, Xi ZG, Zhang HS, et al. Subacute effect of decabromodiphenyl ethane on hepatotoxicity and hepatic enzyme activity in rats. Biomed Environ Sci, 2014; 27, 122-5. https://www.researchgate.net/publication/260808723_Subacute_Effect_of_Decabromodiphenyl_Ethane_on_Hepatotoxicity_and_Hepatic_Enzyme_Activity_in_Rats
[21] Melancon MJ, Williams DE, Buhler DR, et al. Metabolism of 2-methylnaphthalene by rat and rainbow trout hepatic microsomes and purified cytochromes P-450. Drug Metab Dispos, 1985; 13, 542-7. http://dmd.aspetjournals.org/content/13/5/542
[22] Castren M, Oikari A. Optimal assay conditions for liver UDP-glucuronosyltransferase from the rainbow trout, Salmo gairdneri. Comp Biochem Physiol C, 1983; 76, 365-9. doi:  10.1016/0742-8413(83)90091-9
[23] Winsnes A. Studies on the activation in vitro of glucuronyltransferase. Biochim Biophys Acta, 1969; 191, 279-91. doi:  10.1016/0005-2744(69)90247-2
[24] Nanbo T. Developmental changes in hepatic microsomal interactions between UDP-glucuronyltransferase and phospholipid in the rat fetus. Reprod Toxicol, 1998; 12, 449-56. doi:  10.1016/S0890-6238(98)00022-7
[25] Pohl RJ, Fouts JR. A rapid method for assaying the metabolism of 7-ethoxyresorufin by microsomal subcellular fractions. Anal Biochem, 1980; 107, 150-5. doi:  10.1016/0003-2697(80)90505-9
[26] Standeven AM, Goldsworthy TL. Identification of hepatic mitogenic and cytochrome P-450-inducing fractions of unleaded gasoline in B6C3F1 mice. J Toxicol Environ Health, 1994; 43, 213-24. doi:  10.1080/15287399409531916
[27] DeVito MJ, Ma X, Babish JG, et al. Dose-response relationships in mice following subchronic exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin:CYP1A1, CYP1A2, estrogen receptor, and protein tyrosine phosphorylation. Toxicol Appl Pharmacol, 1994; 124, 82-90. doi:  10.1006/taap.1994.1011
[28] Giraudo M, Douville M, Letcher RJ, et al. Effects of food-borne exposure of juvenile rainbow trout (Oncorhynchus mykiss) to emerging brominated flame retardants 1, 2-bis(2, 4, 6-tribromophenoxy) ethane and 2-ethylhexyl-2, 3, 4, 5-tetrabromo-benzoate. Aquat Toxicol, 2017; 186, 40-9. doi:  10.1016/j.aquatox.2017.02.023
[29] Dunnick JK, Morgan DL, Elmore SA, et al. Tetrabromobisphenol A activates the hepatic interferon pathway in rats. Toxicol Lett, 2017; 266, 32-41. doi:  10.1016/j.toxlet.2016.11.019
[30] Yu L, Jia Y, Su G, et al. Parental transfer of tris(1, 3-dichloro-2-propyl) phosphate and transgenerational inhibition of growth of zebrafish exposed to environmentally relevant concentrations. Environ Pollut, 2017; 220, 196-203. doi:  10.1016/j.envpol.2016.09.039
[31] Sun RB, Xi ZG, Yan J, et al. Cytotoxicity and apoptosis induction in human HepG2 hepatoma cells by decabromodiphenyl ethane. Biomed Environ Sci, 2012; 25, 495-501. https://www.sciencedirect.com/science/article/pii/S0895398812600841
[32] Monte MJ, Marin JJ, Antelo A, et al. Bile acids:chemistry, physiology, and pathophysiology. World J Gastroenterol, 2009; 15, 804-16. doi:  10.3748/wjg.15.804
[33] Choi JS, Lee YJ, Kim TH, et al. Molecular Mechanism of Tetrabromobisphenol A (TBBPA)-induced Target Organ Toxicity in Sprague-Dawley Male Rats. Toxicol Res, 2011; 27, 61-70. doi:  10.5487/TR.2011.27.2.061
[34] Jones OA, Maguire ML, Griffin JL. Environmental pollution and diabetes:a neglected association. Lancet, 2008; 371, 287-8. doi:  10.1016/S0140-6736(08)60147-6
[35] Hoppe AA, Carey GB. Polybrominated diphenyl ethers as endocrine disruptors of adipocyte metabolism. Obesity (Silver Spring), 2007; 15, 2942-50. doi:  10.1038/oby.2007.351
[36] Eggesbo M, Thomsen C, Jorgensen JV, et al. Associations between brominated flame retardants in human milk and thyroid-stimulating hormone (TSH) in neonates. Environ Res, 2011; 111, 737-43. doi:  10.1016/j.envres.2011.05.004
[37] Szabo DT, Richardson VM, Ross DG, et al. Effects of perinatal PBDE exposure on hepatic phase Ⅰ, phase Ⅱ, phase Ⅲ, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups. Toxicol Sci, 2009; 107, 27-39. doi:  10.1093/toxsci/kfn230
[38] Boas M, Main KM, Feldt-Rasmussen U. Environmental chemicals and thyroid function:an update. Curr Opin Endocrinol Diabetes Obes, 2009; 16, 385-91. doi:  10.1097/MED.0b013e3283305af7
[39] Bansal R, Zoeller RT. Polychlorinated biphenyls (Aroclor 1254) do not uniformly produce agonist actions on thyroid hormone responses in the developing rat brain. Endocrinology, 2008; 149, 4001-8. doi:  10.1210/en.2007-1774
[40] Nishio N, Katsura T, Ashida K, et al. Modulation of P-glycoprotein expression in hyperthyroid rat tissues. Drug Metab Dispos, 2005; 33, 1584-7. doi:  10.1124/dmd.105.004770
[41] Mitchell AM, Tom M, Mortimer RH. Thyroid hormone export from cells:contribution of P-glycoprotein. J Endocrinol, 2005; 185, 93-8. doi:  10.1677/joe.1.06096
[42] Hallgren S, Sinjari T, Hakansson H, et al. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice. Arch Toxicol, 2001; 75, 200-8. doi:  10.1007/s002040000208
[43] Hallgren S, Darnerud PO. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and chlorinated paraffins (CPs) in rats-testing interactions and mechanisms for thyroid hormone effects. Toxicology, 2002; 177, 227-43. doi:  10.1016/S0300-483X(02)00222-6
[44] Auyeung DJ, Kessler FK, Ritter JK. Mechanism of rat UDP-glucuronosyltransferase 1A6 induction by oltipraz:evidence for a contribution of the Aryl hydrocarbon receptor pathway. Mol Pharmacol, 2003; 63, 119-27. doi:  10.1124/mol.63.1.119
[45] Nishimura N, Yonemoto J, Miyabara Y, et al. Altered thyroxin and retinoid metabolic response to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in aryl hydrocarbon receptor-null mice. Arch Toxicol, 2005; 79, 260-7. doi:  10.1007/s00204-004-0626-4
[46] Peeters RP, Friesema EC, Docter R, et al. Effects of thyroid state on the expression of hepatic thyroid hormone transporters in rats. Am J Physiol Endocrinol Metab, 2002; 283, E1232-8. doi:  10.1152/ajpendo.00214.2002
[47] Boon JP, van Zanden JJ, Lewis WE, et al. The expression of CYP1A, vitellogenin and zona radiata proteins in Atlantic salmon (Salmo salar) after oral dosing with two commercial PBDE flame retardant mixtures:absence of short-term responses. Mar Environ Res, 2002; 54, 719-24. doi:  10.1016/S0141-1136(02)00127-7
[48] Fery Y, Buschauer I, Salzig C, et al. Technical pentabromodiphenyl ether and hexabromocyclododecane as activators of the pregnane-X-receptor (PXR). Toxicology, 2009; 264, 45-51. doi:  10.1016/j.tox.2009.07.009
[49] Fowles JR, Fairbrother A, Baecher-Steppan L, et al. Immunologic and endocrine effects of the flame-retardant pentabromodiphenyl ether (DE-71) in C57BL/6J mice. Toxicology, 1994; 86, 49-61. doi:  10.1016/0300-483X(94)90052-3
[50] Jonsson H, Schiedek D, Goksoyr A, et al. Expression of cytoskeletal proteins, cross-reacting with anti-CYP1A, in Mytilus sp. exposed to organic contaminants. Aquat Toxicol, 2006; 78 Suppl 1, S42-8. https://www.sciencedirect.com/science/article/pii/S0166445X0600066X
[51] Olsvik PA, Lie KK, Sturve J, et al. Transcriptional effects of nonylphenol, bisphenol A and PBDE-47 in liver of juvenile Atlantic cod (Gadus morhua). Chemosphere, 2009; 75, 360-7. doi:  10.1016/j.chemosphere.2008.12.039
[52] Van der Ven LT, van de Kuil T, Leonards PE, et al. A 28-day oral dose toxicity study in Wistar rats enhanced to detect endocrine effects of decabromodiphenyl ether (decaBDE). Toxicol Lett, 2008; 179, 6-14. doi:  10.1016/j.toxlet.2008.03.003
[53] Zacharewski T, Harris M, Safe S, et al. Applications of the in vitro aryl hydrocarbon hydroxylase induction assay for determining " 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin equivalents" :pyrolyzed brominated flame retardants. Toxicology, 1988; 51, 177-89. doi:  10.1016/0300-483X(88)90148-5
[54] Richardson TA, Klaassen CD. Role of UDP-glucuronosyltransferase (UGT) 2B2 in metabolism of triiodothyronine:effect of microsomal enzyme inducers in Sprague Dawley and UGT2B2-deficient Fischer 344 rats. Toxicol Sci, 2010; 116, 413-21. doi:  10.1093/toxsci/kfq125
[55] Sueyoshi T, Li L, Wang H, et al. Flame retardant BDE-47 effectively activates nuclear receptor CAR in human primary hepatocytes. Toxicol Sci, 2013; 137, 292-302. https://tools.niehs.nih.gov/.../portfolio/publicationDetail/id/2087679
[56] Xu T, Wang Q, Shi Q, et al. Bioconcentration, metabolism and alterations of thyroid hormones of Tris(1, 3-dichloro-2-propyl) phosphate (TDCPP) in Zebrafish. Environ Toxicol Pharmacol, 2015; 40, 581-6. doi:  10.1016/j.etap.2015.08.020
[57] Ma Z, Yu Y, Tang S, et al. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio). Aquat Toxicol, 2015; 169, 196-203. doi:  10.1016/j.aquatox.2015.10.017
[58] Wu SY, Green WL, Huang WS, et al. Alternate pathways of thyroid hormone metabolism. Thyroid, 2005; 15, 943-58. doi:  10.1089/thy.2005.15.943
[59] Zhang L, Wang J, Zhu GN. Pubertal exposure to saisentong:effects on thyroid and hepatic enzyme activity in juvenile female rats. Exp Toxicol Pathol, 2010; 62, 127-32. doi:  10.1016/j.etp.2009.03.001