[1] |
Colvin RB, Smith RN. Antibody-mediated organ-allograft rejection. Nat Rev Immunol, 2005; 5, 807-17. doi: 10.1038/nri1702 |
[2] |
Smolenski RT, Forni M, Maccherini M, et al. Reduction of hyperacute rejection and protection of metabolism and function in hearts of human decay accelerating factor (hdaf)-expressing pigs. Cardiovasc Res, 2007; 73, 143-52. doi: 10.1016/j.cardiores.2006.10.027 |
[3] |
Puckett FA, Stahlfeld KR, DiMarco RF. Hyperacute rejection of a bovine pericardial prosthesis. Tex Heart Inst J, 2006; 33, 260-1. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1524681 |
[4] |
Benzimra M, Calligaro GL, Glanville AR. Acute Rejection. J Thorac Dis, 2017; 9, 5440-57. http://jtd.amegroups.com/article/view/17414 |
[5] |
Lauro A, Oltean M, Marino IR. Chronic rejection after intestinal transplant: Where are we in order to avert it? Dig Dis Sci, 2018; 63, 551-62. doi: 10.1007/s10620-018-4909-7 |
[6] |
Khaireddin R, Wachtlin J, Hopfenmüller W, et al. Hla-a, hla-b and hla-dr matching reduces the rate of corneal allograft rejection. Graefe's Arch Clin Exp Ophthalmol, 2003; 241, 1020-8. doi: 10.1007/s00417-003-0759-9 |
[7] |
Taylor AL, Watson CJ, Bradley JA. Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy. Crit Rev Oncol Hematol, 2005; 56, 23-46. doi: 10.1016/j.critrevonc.2005.03.012 |
[8] |
Eisen HJ, Tuzcu EM, Dorent R, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med, 2003; 349, 847-58. doi: 10.1056/NEJMoa022171 |
[9] |
Soulillou JP. Immune monitoring for rejection of kidney transplants. N Engl J Med, 2001; 344, 1006-7. doi: 10.1056/NEJM200103293441309 |
[10] |
Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm, 2001; 221, 1-22. doi: 10.1016/S0378-5173(01)00691-3 |
[11] |
Gaspar A, Moldovan L, Constantin D, et al. Collagen-based scaffolds for skin tissue engineering. J Med Life, 2011; 4, 172-7. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3124265 |
[12] |
Powell HM, Supp DM, Boyce ST. Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials, 2008; 29, 834-43. doi: 10.1016/j.biomaterials.2007.10.036 |
[13] |
Peng YY, Glattauer V, Ramshaw JA, et al. Evaluation of the immunogenicity and cell compatibility of avian collagen for biomedical applications. J Biomed Mater Res, Part A, 2010; 93, 1235-44. http://www.ncbi.nlm.nih.gov/pubmed/19777573 |
[14] |
Lynn AK, Yannas IV, Bonfield W. Antigenicity and immunogenicity of collagen. J Biomed Mater Res, Part B, 2004; 71, 343-54. doi: 10.1002-jbm.b.30096/ |
[15] |
Sundback CA, Shyu JY, Wang Y, et al. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials, 2005; 26, 5454. doi: 10.1016/j.biomaterials.2005.02.004 |
[16] |
Hassanbhai AM, Lau CS, Wen F, et al. In vivo immune responses of cross-linked electrospun tilapia collagen membrane. Tissue Eng Part A, 2017; 23. doi: 10.1089/ten.tea.2016.0504. |
[17] |
Wang X, Tian J, Yong KT, et al. Immunotoxicity assessment of cdse/zns quantum dots in macrophages, lymphocytes and balb/c mice. J Nanobiotechnol, 2016; 14, 10. doi: 10.1186/s12951-016-0162-4 |
[18] |
Pati F, Datta P, Adhikari B, et al. Collagen scaffolds derived from fresh water fish origin and their biocompatibility. J Biomed Mater Res, Part A, 2012; 100, 1068-79. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226309575/ |
[19] |
Bornapour M, Muja N, Shum-Tim D, et al. Biocompatibility and biodegradability of mg-sr alloys: The formation of sr-substituted hydroxyapatite. Acta Biomater, 2012; 9, 5319-30. http://www.sciencedirect.com/science/article/pii/S1742706112003650 |
[20] |
Elsabahy M, Wooley KL. Cytokines as biomarkers of nanoparticle immunotoxicity. Chemical Society Reviews, 2013; 42, 5552. doi: 10.1039/c3cs60064e |
[21] |
Tamaddon M, Walton RS, Brand DD, et al. Characterisation of freeze-dried type ii collagen and chondroitin sulfate scaffolds. Journal of Materials Science Materials in Medicine, 2013; 24, 1153-65. doi: 10.1007/s10856-013-4882-9 |
[22] |
Kwon HJ, Han Y. Chondroitin sulfate-based biomaterials for tissue engineering, 2016; 40, 290-9. |
[23] |
Kim J, Dadsetan M, Ameenuddin S, et al. In vivo biodegradation and biocompatibility of peg/sebacic acid-based hydrogels using a cage implant system. J Biomed Mater Res, Part A, 2010; 95, 191-7. http://www.ncbi.nlm.nih.gov/pubmed/20574982 |
[24] |
Liu H, Wise SG, Rnjak-Kovacina J, et al. Biocompatibility of silk-tropoelastin protein polymers. Biomaterials, 2014; 35, 5138-47. doi: 10.1016/j.biomaterials.2014.03.024 |
[25] |
Fang JJ, Zhu ZY, Dong H, et al. Effect of spleen lymphocytes on the splenomegaly in hepatocellular carcinoma-bearing mice. Biomed Environ Sci, 2014; 27, 17-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bes201401004 |
[26] |
Bao LQ, Dang MN, Huy NT, et al. Splenic cd11c(+) cells derived from semi-immune mice protect naïve mice against experimental cerebral malaria. Malar J, 2015; 14, 23. doi: 10.1186/s12936-014-0533-y |
[27] |
O'Donnell H, Pham OH, Li LX, et al. Toll-like receptor and inflammasome signals converge to amplify the innate bactericidal capacity of t helper 1 cells. Immunity, 2014; 40, 213-24. doi: 10.1016/j.immuni.2013.12.013 |
[28] |
Ge J, Liu Y, Li Q, et al. Resveratrol induces apoptosis and autophagy in t-cell acute lymphoblastic leukemia cells by inhibiting akt/mtor and activating p38-mapk. Biomed Environ Sci, 2013; 26, 902-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bes201311005 |
[29] |
Duan ZH, Lin ZA, Yao HR, et al. Preparation of artificial antigen and egg yolk-derived immunoglobulin (iγg) of citrinin for enzyme-linked immunosorbent assay. Biomed Environ Sci, 2009; 22, 237-43. doi: 10.1016/S0895-3988(09)60051-9 |
[30] |
Welch RJ, Litwin CM. A comparison of brucella igg and igm elisa assays with agglutination methodology. J Clin Lab Anal, 2010; 24, 160-2. doi: 10.1002/jcla.v24:3 |
[31] |
Ivana M, Mhfuod EMAA, Jelena D, et al. Pulmonary immune responses to aspergillus fumigatus in rats. Biomed Environ Sci, 2014; 27, 684-94. http://d.wanfangdata.com.cn/Periodical_bes201409004.aspx |
[32] |
Wang QT, Wu YJ, Huang B, et al. Etanercept attenuates collagen-induced arthritis by modulating the association between baffr expression and the production of splenic memory b cells. Pharmacol Res, 2013; 68, 38-45. doi: 10.1016/j.phrs.2012.11.003 |
[33] |
Rosenberg GA, Cunningham LA, Wallace J, et al. Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: Activation of mmp-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res, 2001; 893, 104-12. doi: 10.1016/S0006-8993(00)03294-7 |
[34] |
Liu PM, Zou L, Sadhu C, et al. Comparative immunogenicity assessment: A critical consideration for biosimilar development. Bioanalysis, 2015; 7, 373-81. doi: 10.4155/bio.14.311 |
[35] |
Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science, 2010; 327, 291-5. doi: 10.1126/science.1183021 |
[36] |
Shen Y, Redmond SL, Papadimitriou JM, et al. The biocompatibility of silk fibroin and acellular collagen scaffolds for tissue engineering in the ear. Biomed Mater, 2014; 9, 015015. doi: 10.1088/1748-6041/9/1/015015 |
[37] |
Xiao X, Pan S, Liu X, et al. In vivo study of the biocompatibility of a novel compressed collagen hydrogel scaffold for artificial corneas. J Biomed Mater Res, Part A, 2014; 102, 1782-7. doi: 10.1002/jbm.a.34848 |
[38] |
Wufuer M, Lee G, Hur W, et al. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci Rep, 2016; 6, 37471. doi: 10.1038/srep37471 |