[1] |
Ordway DJ, Orme IM. Animal models of mycobacteria infection. Curr Protoc Immunol, 2011; Chapter 19: Unit19. 5. |
[2] |
De Groote MA, Gilliland JC, Wells CL, et al. Comparative studies evaluating mouse models used for efficacy testing of experimental drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2011; 55, 1237−47. doi: 10.1128/AAC.00595-10 |
[3] |
Soldevilla P, Vilaplana C, Cardona PJ. Mouse models for Mycobacterium tuberculosis pathogenesis: show and do not tell. Pathogens, 2023; 12, 49. |
[4] |
Caceres N, Llopis I, Marzo E, et al. Low dose aerosol fitness at the innate phase of murine infection better predicts virulence amongst clinical strains of Mycobacterium tuberculosis. PLoS One, 2012; 7, e29010. doi: 10.1371/journal.pone.0029010 |
[5] |
Chackerian AA, Perera TV, Behar SM. Gamma interferon-producing CD4+ T lymphocytes in the lung correlate with resistance to infection with Mycobacterium tuberculosis. Infect Immun, 2001; 69, 2666−74. doi: 10.1128/IAI.69.4.2666-2674.2001 |
[6] |
Fursov MV, Shitikov EA, Bespyatykh JA, et al. Genotyping, assessment of virulence and antibacterial resistance of the Rostov strain of Mycobacterium tuberculosis attributed to the central Asia outbreak clade. Pathogens, 2020; 9, 335. doi: 10.3390/pathogens9050335 |
[7] |
Vinogradova T, Dogonadze M, Zabolotnykh N, et al. Extremely lethal and hypervirulent Mycobacterium tuberculosis strain cluster emerging in Far East, Russia. Emerg Microbes Infect, 2021; 10, 1691−701. doi: 10.1080/22221751.2021.1967704 |
[8] |
Mokrousov I, Vinogradova T, Dogonadze M, et al. A multifaceted interplay between virulence, drug resistance, and the phylogeographic landscape of Mycobacterium tuberculosis. Microbiol Spectr, 2023; 11, e0139223. doi: 10.1128/spectrum.01392-23 |
[9] |
WHO. Global Tuberculosis Report 2023. Geneva: World Health Organization; 2023. |
[10] |
Stukova MA, Sereinig S, Zabolotnyh NV, et al. Vaccine potential of influenza vectors expressing Mycobacterium tuberculosis ESAT-6 protein. Tuberculosis, 2006; 86, 236−46. doi: 10.1016/j.tube.2006.01.010 |
[11] |
Marquis JF, LaCourse R, Ryan L, et al. Disseminated and rapidly fatal tuberculosis in mice bearing a defective allele at IFN regulatory factor 8. J Immunol, 2009; 182, 3008−15. doi: 10.4049/jimmunol.0800680 |
[12] |
WHO. WHO Consolidated Guidelines on Drug-Resistant Tuberculosis Treatment. Geneva: World Health Organization; 2019. |
[13] |
Yablonsky PK. National clinical guidelines. GEOTAR-Media. 2016, 240 p. |
[14] |
Pavlova MV, Vinogradova TI, Zabolotnykh NV, et al. Prospects for the use of new generation of anti-tuberculosis drugs in treatment of drug-resistant tuberculosis. Rev Clin Pharm Drug Ther, 2020; 18, 115−21. (In Russian |
[15] |
Ushtanit A, Mikhailova Y, Krylova L, et al. Perchlozone resistance in clinical isolates of Mycobacterium tuberculosis. Antibiotics, 2023; 12, 590. doi: 10.3390/antibiotics12030590 |
[16] |
Patterson B, Dinkele R, Gessner S, et al. Aerosolization of viable Mycobacterium tuberculosis bacilli by tuberculosis clinic attendees independent of sputum-Xpert ultra status. Proc Natl Acad Sci USA, 2024; 121, e2314813121. doi: 10.1073/pnas.2314813121 |
[17] |
Yang TT, Gan MY, Liu QY, et al. SAM-TB: a whole genome sequencing data analysis website for detection of Mycobacterium tuberculosis drug resistance and transmission. Brief Bioinform, 2022; 23, bbac030. doi: 10.1093/bib/bbac030 |
[18] |
Mokrousov I, Akhmedova G, Molchanov V, et al. Frequent acquisition of bedaquiline resistance by epidemic extensively drug-resistant Mycobacterium tuberculosis strains in Russia during long-term treatment. Clin Microbiol Infect, 2021; 27, 478−80. doi: 10.1016/j.cmi.2020.08.030 |
[19] |
Perumal R, Khan A, Naidoo K, et al. Mycobacterium tuberculosis intra-host evolution among drug-resistant tuberculosis patients failing treatment. Infect Drug Resist, 2023; 16, 2849−59. doi: 10.2147/IDR.S408976 |
[20] |
Smith SE, Ershova J, Vlasova N, et al. Risk factors for acquisition of drug resistance during multidrug-resistant tuberculosis treatment, Arkhangelsk Oblast, Russia, 2005-2010. Emerg Infect Dis, 2015; 21, 1002−11. doi: 10.3201/eid2106.141907 |
[21] |
Al-Hajjaj MS, Al-Khatim IM. High rate of non-compliance with anti-tuberculosis treatment despite a retrieval system: a call for implementation of directly observed therapy in Saudi Arabia. Int J Tuberc Lung Dis, 2000; 4, 345−9. |
[22] |
Walker TM, Miotto P, Köser CU, et al. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis. Lancet Microbe, 2022; 3, e265−73. doi: 10.1016/S2666-5247(21)00301-3 |