[1] |
Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009; 459, 262−5. doi: 10.1038/nature07935 |
[2] |
Clevers H. Modeling development and disease with organoids. Cell, 2016; 165, 1586−97. doi: 10.1016/j.cell.2016.05.082 |
[3] |
Tuveson D, Clevers H. Cancer modeling meets human organoid technology. Science, 2019; 364, 952−5. doi: 10.1126/science.aaw6985 |
[4] |
Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018; 359, 920−6. doi: 10.1126/science.aao2774 |
[5] |
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007; 131, 861−72. doi: 10.1016/j.cell.2007.11.019 |
[6] |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006; 126, 663−76. doi: 10.1016/j.cell.2006.07.024 |
[7] |
Sobey CG, Drummond GR, George CH. How good are our models of cardiovascular disease? Introducing our themed issue on preclinical models for cardiovascular disease research. Br J Pharmacol, 2022. |
[8] |
Xuan WL, Tipparaju SM, Ashraf M. Transformational applications of human cardiac organoids in cardiovascular diseases. Front Cell Dev Biol, 2022; 10, 936084. doi: 10.3389/fcell.2022.936084 |
[9] |
Shin HS, Shin HH, Shudo Y. Current status and limitations of myocardial infarction large animal models in cardiovascular translational research. Front Bioeng Biotechnol, 2021; 9, 673683. doi: 10.3389/fbioe.2021.673683 |
[10] |
Mourad O, Yee R, Li MY, et al. Modeling heart diseases on a chip: advantages and future opportunities. Circ Res, 2023; 132, 483−97. doi: 10.1161/CIRCRESAHA.122.321670 |
[11] |
Kobayashi H, Tohyama S, Ichimura H, et al. Regeneration of nonhuman primate hearts with human induced pluripotent stem cell-derived cardiac spheroids. Circulation, 2024; 150, 611−21. doi: 10.1161/CIRCULATIONAHA.123.064876 |
[12] |
Andersen P, Tampakakis E, Jimenez DV, et al. Precardiac organoids form two heart fields via Bmp/Wnt signaling. Nat Commun, 2018; 9, 3140. doi: 10.1038/s41467-018-05604-8 |
[13] |
Pitaktong I, Lui C, Lowenthal J, et al. Early vascular cells improve microvascularization within 3D cardiac spheroids. Tissue Eng Part C Methods, 2020; 26, 80−90. doi: 10.1089/ten.tec.2019.0228 |
[14] |
Maltsev VA, Rohwedel J, Hescheler J, et al. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev, 1993; 44, 41−50. doi: 10.1016/0925-4773(93)90015-P |
[15] |
Mohr E, Thum T, Bär C. Accelerating cardiovascular research: recent advances in translational 2D and 3D heart models. Eur J Heart Fail, 2022; 24, 1778−91. doi: 10.1002/ejhf.2631 |
[16] |
Huang SW, Tzeng SC, Chen JK, et al. A dynamic hanging-drop system for mesenchymal stem cell culture. Int J Mol Sci, 2020; 21, 4298. doi: 10.3390/ijms21124298 |
[17] |
Lai PT, He CK, Li CH, et al. The hanging‐heart chip: a portable microfluidic device for high‐throughput generation of contractile embryonic stem cell‐derived cardiac spheroids. Bioeng Transl Med, 2025; 10, e10726. doi: 10.1002/btm2.10726 |
[18] |
Noguchi R, Nakayama K, Itoh M, et al. Development of a three-dimensional pre-vascularized scaffold-free contractile cardiac patch for treating heart disease. J Heart Lung Transplant, 2016; 35, 137−45. doi: 10.1016/j.healun.2015.06.001 |
[19] |
Correia C, Koshkin A, Duarte P, et al. 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes. Biotechnol Bioeng, 2018; 115, 630−44. doi: 10.1002/bit.26504 |
[20] |
Kempf H, Kropp C, Olmer R, et al. Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat Protoc, 2015; 10, 1345−61. doi: 10.1038/nprot.2015.089 |
[21] |
Sebastião MJ, Gomes-Alves P, Reis I, et al. Bioreactor-based 3D human myocardial ischemia/reperfusion in vitro model: a novel tool to unveil key paracrine factors upon acute myocardial infarction. Transl Res, 2020; 215, 57−74. doi: 10.1016/j.trsl.2019.09.001 |
[22] |
Kawaguchi S, Soma Y, Nakajima K, et al. Intramyocardial transplantation of human iPS cell-derived cardiac spheroids improves cardiac function in heart failure animals. JACC Basic Transl Sci, 2021; 6, 239−54. doi: 10.1016/j.jacbts.2020.11.017 |
[23] |
Kofron CM, Kim TY, Munarin F, et al. A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues. Sci Rep, 2021; 11, 10228. doi: 10.1038/s41598-021-89478-9 |
[24] |
Seguret M, Vermersch E, Jouve C, et al. Cardiac organoids to model and heal heart failure and cardiomyopathies. Biomedicines, 2021; 9, 563. doi: 10.3390/biomedicines9050563 |
[25] |
Nag AC. Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios, 1980; 28, 41−61. |
[26] |
Frangogiannis NG. The extracellular matrix in ischemic and nonischemic heart failure. Circ Res, 2019; 125, 117−46. doi: 10.1161/CIRCRESAHA.119.311148 |
[27] |
Farah EN, Hu RK, Kern C, et al. Spatially organized cellular communities form the developing human heart. Nature, 2024; 627, 854−64. doi: 10.1038/s41586-024-07171-z |
[28] |
Lewis-Israeli YR, Wasserman AH, Gabalski MA, et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat Commun, 2021; 12, 5142. doi: 10.1038/s41467-021-25329-5 |
[29] |
Hofbauer P, Jahnel SM, Papai N, et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell, 2021; 184, 3299-317. e22. |
[30] |
Zimmermann WH, Schneiderbanger K, Schubert P, et al. Tissue engineering of a differentiated cardiac muscle construct. Circ Res, 2002; 90, 223−30. doi: 10.1161/hh0202.103644 |
[31] |
Yang DH, Gomez-Garcia J, Funakoshi S, et al. Modeling human multi-lineage heart field development with pluripotent stem cells. Cell Stem Cell, 2022; 29, 1382-401. e8. |
[32] |
Lewis-Israeli YR, Abdelhamid M, Olomu I, et al. Modeling the effects of maternal diabetes on the developing human heart using pluripotent stem cell-derived heart organoids. Curr Protoc, 2022; 2, e461. doi: 10.1002/cpz1.461 |
[33] |
Volmert B, Kiselev A, Juhong A, et al. A patterned human primitive heart organoid model generated by pluripotent stem cell self-organization. Nat Commun, 2023; 14, 8245. doi: 10.1038/s41467-023-43999-1 |
[34] |
Rossi G, Broguiere N, Miyamoto M, et al. Capturing cardiogenesis in gastruloids. Cell Stem Cell, 2021; 28, 230-40. e6. |
[35] |
Gifford CA, Ranade SS, Samarakoon R, et al. Oligogenic inheritance of a human heart disease involving a genetic modifier. Science, 2019; 364, 865−70. doi: 10.1126/science.aat5056 |
[36] |
Ghosheh M, Ehrlich A, Ioannidis K, et al. Electro-metabolic coupling in multi-chambered vascularized human cardiac organoids. Nat Biomed Eng, 2023; 7, 1493−513. doi: 10.1038/s41551-023-01071-9 |
[37] |
Lee JH, Protze SI, Laksman Z, et al. Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell, 2017; 21, 179-94. e4. |
[38] |
Lee J, Sutani A, Kaneko R, et al. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nat Commun, 2020; 11, 4283. doi: 10.1038/s41467-020-18031-5 |
[39] |
Schmidt C, Deyett A, Ilmer T, et al. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell, 2023; 186, 5587-605. e27. |
[40] |
Li YR, Du JL, Deng SB, et al. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther, 2024; 9, 368. doi: 10.1038/s41392-024-02069-8 |
[41] |
Drakhlis L, Biswanath S, Farr CM, et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol, 2021; 39, 737−46. doi: 10.1038/s41587-021-00815-9 |
[42] |
Silva AC, Matthys OB, Joy DA, et al. Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids. Cell Stem Cell, 2021; 28, 2137-52. e6. |
[43] |
Rossi G, Giger S, Hübscher T, et al. Gastruloids as in vitro models of embryonic blood development with spatial and temporal resolution. Sci Rep, 2022; 12, 13380. doi: 10.1038/s41598-022-17265-1 |
[44] |
Dardano M, Kleemiß F, Kosanke M, et al. Blood-generating heart-forming organoids recapitulate co-development of the human haematopoietic system and the embryonic heart. Nat Cell Biol, 2024; 26, 1984−96. doi: 10.1038/s41556-024-01526-4 |
[45] |
Kim E, Choi S, Kang B, et al. Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature, 2020; 588, 664−9. doi: 10.1038/s41586-020-3034-x |
[46] |
Richards DJ, Coyle RC, Tan Y, et al. Inspiration from heart development: biomimetic development of functional human cardiac organoids. Biomaterials, 2017; 142, 112−23. doi: 10.1016/j.biomaterials.2017.07.021 |
[47] |
Li YH, Saiding Q, Wang Z, et al. Engineered biomimetic hydrogels for organoids. Prog Mater Sci, 2024; 141, 101216. doi: 10.1016/j.pmatsci.2023.101216 |
[48] |
Schwach V, Passier R. Native cardiac environment and its impact on engineering cardiac tissue. Biomater Sci, 2019; 7, 3566−80. doi: 10.1039/C8BM01348A |
[49] |
Kaczmarek-Szczepańska B, Polkowska I, Małek M, et al. The characterization of collagen-based scaffolds modified with phenolic acids for tissue engineering application. Sci Rep, 2023; 13, 9966. doi: 10.1038/s41598-023-37161-6 |
[50] |
Wang YY, Wang ZK, Dong Y. Collagen-based biomaterials for tissue engineering. ACS Biomater Sci Eng, 2023; 9, 1132−50. doi: 10.1021/acsbiomaterials.2c00730 |
[51] |
Kong JS, Kim JJ, Riva L, et al. In vitro three-dimensional volumetric printing of vitreous body models using decellularized extracellular matrix bioink. Biofabrication, 2024; 16, 045030. doi: 10.1088/1758-5090/ad6f46 |
[52] |
Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 2010; 10, 1886−90. doi: 10.1002/pmic.200900758 |
[53] |
Kim S, Min S, Choi YS, et al. Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nat Commun, 2022; 13, 1692. doi: 10.1038/s41467-022-29279-4 |
[54] |
Liang J, Guo ZC, Timmerman A, et al. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks. Biomed Mater, 2019; 14, 024102. doi: 10.1088/1748-605X/aaf31b |
[55] |
Cruz-Acuña R, Quirós M, Huang S, et al. PEG-4MAL hydrogels for human organoid generation, culture, and in vivo delivery. Nat Protoc, 2018; 13, 2102−19. doi: 10.1038/s41596-018-0036-3 |
[56] |
Zhang B, Luo YC, Zhou X, et al. GelMA micropattern enhances cardiomyocyte organization, maturation, and contraction via contact guidance. APL Bioeng, 2024; 8, 026108. doi: 10.1063/5.0182585 |
[57] |
Voges HK, Foster SR, Reynolds L, et al. Vascular cells improve functionality of human cardiac organoids. Cell Rep, 2023; 42, 112322. doi: 10.1016/j.celrep.2023.112322 |
[58] |
Yang JS, Lei W, Xiao Y, et al. Generation of human vascularized and chambered cardiac organoids for cardiac disease modelling and drug evaluation. Cell Prolif, 2024; 57, e13631. doi: 10.1111/cpr.13631 |
[59] |
Mehrotra S, de Melo BAG, Hirano M, et al. Nonmulberry silk based ink for fabricating mechanically robust cardiac patches and endothelialized myocardium-on-a-chip application. Adv Funct Mater, 2020; 30, 1907436. doi: 10.1002/adfm.201907436 |
[60] |
Ong CS, Fukunishi T, Nashed A, et al. Creation of cardiac tissue exhibiting mechanical integration of spheroids using 3D bioprinting. J Vis Exp, 2017; 55438. |
[61] |
Noor N, Shapira A, Edri R, et al. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci (Weinh), 2019; 6, 1900344. doi: 10.1002/advs.201900344 |
[62] |
Lee S, Sani ES, Spencer AR, et al. Human-recombinant-elastin-based bioinks for 3D bioprinting of vascularized soft tissues. Adv Mater, 2020; 32, 2003915. doi: 10.1002/adma.202003915 |
[63] |
Fang YC, Guo YH, Wu BY, et al. Expanding embedded 3D bioprinting capability for engineering complex organs with freeform vascular networks. Adv Mater, 2023; 35, 2205082. doi: 10.1002/adma.202205082 |
[64] |
Das S, Nam H, Jang J. 3D bioprinting of stem cell-laden cardiac patch: a promising alternative for myocardial repair. APL Bioeng, 2021; 5, 031508. doi: 10.1063/5.0030353 |
[65] |
Daly AC, Davidson MD, Burdick JA. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun, 2021; 12, 753. doi: 10.1038/s41467-021-21029-2 |
[66] |
Zhang ZY, Wu CM, Dai CK, et al. A multi-axis robot-based bioprinting system supporting natural cell function preservation and cardiac tissue fabrication. Bioact Mater, 2022; 18, 138−50. |
[67] |
Li JR, Wiesinger A, Fokkert L, et al. Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids. Cell Stem Cell, 2024; 31, 1667-84. e6. |
[68] |
Elomaa L, Keshi E, Sauer IM, et al. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography. Mater Sci Eng C Mater Biol Appl, 2020; 112, 110958. doi: 10.1016/j.msec.2020.110958 |
[69] |
Kim JW, Nam SA, Yi J, et al. Kidney decellularized extracellular matrix enhanced the vascularization and maturation of human kidney organoids. Adv Sci (Weinh), 2022; 9, 2103526. doi: 10.1002/advs.202103526 |
[70] |
Malhotra R, Valuckaite V, Staron ML, et al. High-molecular-weight polyethylene glycol protects cardiac myocytes from hypoxia- and reoxygenation-induced cell death and preserves ventricular function. Am J Physiol Heart Circ Physiol, 2011; 300, H1733−42. doi: 10.1152/ajpheart.01054.2010 |
[71] |
Dong ZQ, Guo J, Xing XW, et al. RGD modified and PEGylated lipid nanoparticles loaded with puerarin: formulation, characterization and protective effects on acute myocardial ischemia model. Biomed Pharmacother, 2017; 89, 297−304. doi: 10.1016/j.biopha.2017.02.029 |
[72] |
Kumar H, Sakthivel K, Mohamed MGA, et al. Designing gelatin methacryloyl (GelMA)-based bioinks for visible light stereolithographic 3D biofabrication. Macromol Biosci, 2021; 21, 2000317. doi: 10.1002/mabi.202000317 |
[73] |
Ying GL, Jiang N, Yu CJ, et al. Three-dimensional bioprinting of gelatin methacryloyl (GelMA). Bio-Des Manuf, 2018; 1, 215−24. doi: 10.1007/s42242-018-0028-8 |
[74] |
Zhu K, Shin SR, van Kempen T, et al. Gold nanocomposite bioink for printing 3D cardiac constructs. Adv Funct Mater, 2017; 27, 1605352. doi: 10.1002/adfm.201605352 |
[75] |
Mamaghani KR, Naghib SM, Zahedi A, et al. GelMa/PEGDA containing graphene oxide as an IPN hydrogel with superior mechanical performance. Mater Today: Proc, 2018; 5, 15790−9. doi: 10.1016/j.matpr.2018.04.193 |
[76] |
Jayne RK, Karakan MÇ, Zhang KH, et al. Direct laser writing for cardiac tissue engineering: a microfluidic heart on a chip with integrated transducers. Lab Chip, 2021; 21, 1724−37. doi: 10.1039/D0LC01078B |
[77] |
Demers CJ, Soundararajan P, Chennampally P, et al. Development-on-chip: in vitro neural tube patterning with a microfluidic device. Development, 2016; 143, 1884−92. doi: 10.1242/dev.126847 |
[78] |
Liu Y, Kamran R, Han XX, et al. Human heart-on-a-chip microphysiological system comprising endothelial cells, fibroblasts, and iPSC-derived cardiomyocytes. Sci Rep, 2024; 14, 18063. doi: 10.1038/s41598-024-68275-0 |
[79] |
Di Cio S, Marhuenda E, Haddrick M, et al. Vascularised cardiac spheroids-on-a-chip for testing the toxicity of therapeutics. Sci Rep, 2024; 14, 3370. doi: 10.1038/s41598-024-53678-w |
[80] |
Ronco C, Haapio M, House AA, et al. Cardiorenal syndrome. J Am Coll Cardiol, 2008; 52, 1527−39. doi: 10.1016/j.jacc.2008.07.051 |
[81] |
Gabbin B, Meraviglia V, Angenent ML, et al. Heart and kidney organoids maintain organ-specific function in a microfluidic system. Mater Today Bio, 2023; 23, 100818. doi: 10.1016/j.mtbio.2023.100818 |
[82] |
Yin FC, Zhang X, Wang L, et al. HiPSC-derived multi-organoids-on-chip system for safety assessment of antidepressant drugs. Lab Chip, 2021; 21, 571−81. doi: 10.1039/D0LC00921K |
[83] |
Pires de Mello CPP, Carmona-Moran C, McAleer CW, et al. Microphysiological heart-liver body-on-a-chip system with a skin mimic for evaluating topical drug delivery. Lab Chip, 2020; 20, 749−59. doi: 10.1039/C9LC00861F |
[84] |
Peng XY, Wu L, Li QS, et al. An easy-to-use arrayed brain-heart chip. Biosensors (Basel), 2024; 14, 517. |
[85] |
Rajan SAP, Aleman J, Wan MM, et al. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform. Acta Biomater, 2020; 106, 124−35. doi: 10.1016/j.actbio.2020.02.015 |
[86] |
Choudhury TZ, Greskovich SC, Girard HB, et al. Impact of genetic factors on antioxidant rescue of maternal diabetes-associated congenital heart disease. JCI Insight, 2024; 9, e183516. doi: 10.1172/jci.insight.183516 |
[87] |
Salvatore T, Pafundi PC, Galiero R, et al. The diabetic cardiomyopathy: the contributing pathophysiological mechanisms. Front Med (Lausanne), 2021; 8, 695792. |
[88] |
Marian AJ. Molecular genetic basis of hypertrophic cardiomyopathy. Circ Res, 2021; 128, 1533−53. doi: 10.1161/CIRCRESAHA.121.318346 |
[89] |
He JF, Liu DY, Zhao LX, et al. Myocardial ischemia/reperfusion injury: mechanisms of injury and implications for management (review). Exp Ther Med, 2022; 23, 430. doi: 10.3892/etm.2022.11357 |
[90] |
Engineer A, Saiyin T, Lu XR, et al. Sapropterin treatment prevents congenital heart defects induced by pregestational diabetes mellitus in mice. J Am Heart Assoc, 2018; 7, e009624. doi: 10.1161/JAHA.118.009624 |
[91] |
Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol, 2002; 39, 1890−900. doi: 10.1016/S0735-1097(02)01886-7 |
[92] |
Zhang L, Nomura-Kitabayashi A, Sultana N, et al. Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development. Dev Biol, 2014; 390, 68−79. doi: 10.1016/j.ydbio.2014.02.023 |
[93] |
Kostina A, Lewis-Israeli YR, Abdelhamid M, et al. ER stress and lipid imbalance drive diabetic embryonic cardiomyopathy in an organoid model of human heart development. Stem Cell Reports, 2024; 19, 317−30. doi: 10.1016/j.stemcr.2024.01.003 |
[94] |
Lauridsen MD, Rorth R, Butt JH, et al. Five-year risk of heart failure and death following myocardial infarction with cardiogenic shock: a nationwide cohort study. Eur Heart J Acute Cardiovasc Care, 2021; 10, 40−9. |
[95] |
Voges HK, Mills RJ, Elliott DA, et al. Development of a human cardiac organoid injury model reveals innate regenerative potential. Development, 2017; 144, 1118−27. |
[96] |
Richards DJ, Li Y, Kerr CM, et al. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat Biomed Eng, 2020; 4, 446−62. doi: 10.1038/s41551-020-0539-4 |
[97] |
Zhang LH, Jiang Y, Jia WW, et al. Modelling myocardial ischemia/reperfusion injury with inflammatory response in human ventricular cardiac organoids. Cell Prolif, 2025; 58, e13762. doi: 10.1111/cpr.13762 |
[98] |
Kussauer S, David R, Lemcke H. hiPSCs derived cardiac cells for drug and toxicity screening and disease modeling: what micro- electrode-array analyses can tell us. Cells, 2019; 8, 1331. doi: 10.3390/cells8111331 |
[99] |
Blinova K, Dang QY, Millard D, et al. International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Rep, 2018; 24, 3582−92. doi: 10.1016/j.celrep.2018.08.079 |
[100] |
Guerrelli D, Pressman J, Posnack N. hiPSC-CM electrophysiology: impact of temporal changes and study parameters on experimental reproducibility. Am J Physiol Heart Circ Physiol, 2024; 327, H12−27. doi: 10.1152/ajpheart.00631.2023 |
[101] |
Mills RJ, Parker BL, Quaife-Ryan GA, et al. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell, 2019; 24, 895-907. e6. |
[102] |
Waring MJ, Arrowsmith J, Leach AR, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov, 2015; 14, 475−86. doi: 10.1038/nrd4609 |
[103] |
De Gregorio V, Telesco M, Corrado B, et al. Intestine-liver axis on-chip reveals the intestinal protective role on hepatic damage by emulating ethanol first-pass metabolism. Front Bioeng Biotechnol, 2020; 8, 163. doi: 10.3389/fbioe.2020.00163 |
[104] |
Zhu YX, Jiang DM, Qiu Y, et al. Dynamic microphysiological system chip platform for high-throughput, customizable, and multi-dimensional drug screening. Bioact Mater, 2024; 39, 59−73. |
[105] |
Forsythe SD, Devarasetty M, Shupe T, et al. Environmental toxin screening using human-derived 3D bioengineered liver and cardiac organoids. Front Public Health, 2018; 6, 103. doi: 10.3389/fpubh.2018.00103 |
[106] |
Wu X, Chen YC, Luz A, et al. Cardiac development in the presence of cadmium: an in vitro study using human embryonic stem cells and cardiac organoids. Environ Health Perspect, 2022; 130, 117002. doi: 10.1289/EHP11208 |
[107] |
V L Leonard S, Liddle CR, Atherall CA, et al. Microplastics in human blood: polymer types, concentrations and characterisation using μFTIR. Environ Int, 2024; 188, 108751. doi: 10.1016/j.envint.2024.108751 |
[108] |
Ragusa A, Svelato A, Santacroce C, et al. Plasticenta: first evidence of microplastics in human placenta. Environ Int, 2021; 146, 106274. doi: 10.1016/j.envint.2020.106274 |
[109] |
Persiani E, Cecchettini A, Ceccherini E, et al. Microplastics: a matter of the heart (and vascular system). Biomedicines, 2023; 11, 264. doi: 10.3390/biomedicines11020264 |
[110] |
Li JY, Weng HM, Liu S, et al. Embryonic exposure of polystyrene nanoplastics affects cardiac development. Sci Total Environ, 2024; 906, 167406. doi: 10.1016/j.scitotenv.2023.167406 |
[111] |
Zhang TY, Yang S, Ge YL, et al. Unveiling the heart's hidden enemy: dynamic insights into polystyrene nanoplastic-induced cardiotoxicity based on cardiac organoid-on-a-chip. ACS Nano, 2024; 18, 31569−85. doi: 10.1021/acsnano.4c13262 |
[112] |
Yang NN, Chen JH, Zhu YJ, et al. Human cardiac organoid model reveals antibacterial triclocarban promotes myocardial hypertrophy by interfering with endothelial cell metabolism. Sci Bull (Beijing), 2025; 70, 342−6. doi: 10.1016/j.scib.2024.11.037 |
[113] |
Wang XY, Tan X, Zhang T, et al. Modeling diabetic cardiomyopathy using human cardiac organoids: effects of high glucose and lipid conditions. Chem Biol Interact, 2025; 411, 111421. doi: 10.1016/j.cbi.2025.111421 |
[114] |
Zhang LY, Tian L, Liang BF, et al. Construction of an adverse outcome pathway for the cardiac toxicity of bisphenol a by using bioinformatics analysis. Toxicology, 2024; 509, 153955. doi: 10.1016/j.tox.2024.153955 |
[115] |
Srivastava D. Modeling human cardiac chambers with organoids. N Engl J Med, 2021; 385, 847−9. doi: 10.1056/NEJMcibr2108627 |
[116] |
George RM, Maldonado-Velez G, Firulli AB. The heart of the neural crest: cardiac neural crest cells in development and regeneration. Development, 2020; 147, dev188706. doi: 10.1242/dev.188706 |
[117] |
Kerr CM, Richards D, Menick DR, et al. Multicellular human cardiac organoids transcriptomically model distinct tissue-level features of adult myocardium. Int J Mol Sci, 2021; 22, 8482. doi: 10.3390/ijms22168482 |
[118] |
Lyu QX, Gong S, Lees JG, et al. A soft and ultrasensitive force sensing diaphragm for probing cardiac organoids instantaneously and wirelessly. Nat Commun, 2022; 13, 7259. doi: 10.1038/s41467-022-34860-y |
[119] |
Zhang FZ, Qiu H, Dong XH, et al. Single-cell atlas of multilineage cardiac organoids derived from human induced pluripotent stem cells. Life Med, 2022; 1, 179−95. doi: 10.1093/lifemedi/lnac002 |
[120] |
Feng W, Schriever H, Jiang S, et al. Computational profiling of hiPSC-derived heart organoids reveals chamber defects associated with NKX2-5 deficiency. Commun Biol, 2022; 5, 399. doi: 10.1038/s42003-022-03346-4 |
[121] |
Robles-Remacho A, Sanchez-Martin RM, Diaz-Mochon JJ. Spatial transcriptomics: emerging technologies in tissue gene expression profiling. Anal Chem, 2023; 95, 15450−60. doi: 10.1021/acs.analchem.3c02029 |
[122] |
Ma SH, Wang WL, Zhou JQ, et al. Lamination-based organoid spatially resolved transcriptomics technique for primary lung and liver organoid characterization. Proc Natl Acad Sci USA, 2024; 121, e2408939121. doi: 10.1073/pnas.2408939121 |
[123] |
Nguyen Q, Tung LW, Lin B, et al. Spatial transcriptomics in human cardiac tissue. Int J Mol Sci, 2025; 26, 995. doi: 10.3390/ijms26030995 |
[124] |
Wang HK, Xu LZ, Han S, et al. Hyperactivation of platelet-derived growth factor signalling contributes to arrhythmogenesis in Brugada syndrome. Clin Transl Med, 2022; 12, e715. doi: 10.1002/ctm2.715 |
[125] |
Xu P, Liu ZH, Liu Y, et al. Genome-wide interrogation of gene functions through base editor screens empowered by barcoded sgRNAs. Nat Biotechnol, 2021; 39, 1403−13. doi: 10.1038/s41587-021-00944-1 |
[126] |
Kowalczewski A, Sun SY, Mai NY, et al. Design optimization of geometrically confined cardiac organoids enabled by machine learning techniques. Cell Rep Methods, 2024; 4, 100798. doi: 10.1016/j.crmeth.2024.100798 |
[127] |
Lin HR, Cheng JJ, Zhu CW, et al. Artificial intelligence-enabled quantitative assessment and intervention for heart inflammation model organoids. Angew Chem Int Ed, 2025; 64, e202503252. doi: 10.1002/anie.202503252 |
[128] |
Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature, 2008; 453, 524−8. doi: 10.1038/nature06894 |
[129] |
Xing TY, Wang XL, Xu YQ, et al. Click method preserves but EDC method compromises the therapeutic activities of the peptide-activated hydrogels for critical ischemic vessel regeneration. Biomed Pharmacother, 2024; 177, 116959. doi: 10.1016/j.biopha.2024.116959 |
[130] |
Lai BFL, Lu RXZ, Davenport Huyer L, et al. A well plate-based multiplexed platform for incorporation of organoids into an organ-on-a-chip system with a perfusable vasculature. Nat Protoc, 2021; 16, 2158−89. doi: 10.1038/s41596-020-00490-1 |
[131] |
Murata K, Takamura K, Abulaiti M, et al. Development of a cardiotoxicity evaluation system using a Heart-on-a-Chip Microdevice with aligned fiber device. Eur Heart J, 2024; 45, ehae666.3364. doi: 10.1093/eurheartj/ehae666.3364 |
[132] |
Grainger S, Traver D. Embryonic immune cells remodel the heart. Dev Cell, 2019; 48, 595−6. doi: 10.1016/j.devcel.2019.02.017 |
[133] |
O'Hern C, Caywood S, Aminova S, et al. Human heart assembloids with autologous tissue-resident macrophages recreate physiological immuno-cardiac interactions. Preprint. bioRxiv, 2024; 2024.11. 13.623051. |
[134] |
Landau S, Zhao YM, Hamidzada H, et al. Primitive macrophages enable long-term vascularization of human heart-on-a-chip platforms. Cell Stem Cell, 2024; 31, 1222-38. e10. |
[135] |
Tampakakis E, Gangrade H, Glavaris S, et al. Heart neurons use clock genes to control myocyte proliferation. Sci Adv, 2021; 7, eabh4181. doi: 10.1126/sciadv.abh4181 |
[136] |
Manolis AA, Manolis TA, Apostolopoulos EJ, et al. The role of the autonomic nervous system in cardiac arrhythmias: the neuro-cardiac axis, more foe than friend? Trends Cardiovasc Med, 2021; 31, 290-302. |
[137] |
Oh Y, Cho GS, Li Z, et al. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons. Cell Stem Cell, 2016; 19, 95−106. doi: 10.1016/j.stem.2016.05.002 |
[138] |
Saorin G, Caligiuri I, Rizzolio F. Microfluidic organoids-on-a-chip: the future of human models. Semin Cell Dev Biol, 2023; 144, 41−54. doi: 10.1016/j.semcdb.2022.10.001 |