[1] World Health Organization. The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. [2024-08-07]
[2] Martin SS, Aday AW, Almarzooq ZI, et al. 2024 heart disease and stroke statistics: a report of US and global data from the American Heart Association. Circulation, 2024; 149, e347−913.
[3] Luengo-Fernandez R, Walli-Attaei M, Gray A, et al. Economic burden of cardiovascular diseases in the European Union: a population-based cost study. Eur Heart J, 2023; 44, 4752−67. doi:  10.1093/eurheartj/ehad583
[4] National Center for Cardiovascular Diseases, The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases in China 2023: an updated summary. Biomed Environ Sci, 2024; 37, 949−92.
[5] Mortimer K, Gordon SB, Jindal SK, et al. Household air pollution is a major avoidable risk factor for cardiorespiratory disease. Chest, 2012; 142, 1308−15. doi:  10.1378/chest.12-1596
[6] Qiu AY, Leng SG, McCormack M, et al. Lung effects of household air pollution. J Allergy Clin Immunol Pract, 2022; 10, 2807−19. doi:  10.1016/j.jaip.2022.08.031
[7] Chen C, Zhao YJ, Zhao B. Emission rates of multiple air pollutants generated from Chinese residential cooking. Environ Sci Technol, 2018; 52, 1081−7. doi:  10.1021/acs.est.7b05600
[8] Lee MS, Hang JQ, Zhang FY, et al. In-home solid fuel use and cardiovascular disease: a cross-sectional analysis of the Shanghai Putuo study. Environ Health, 2012; 11, 18. doi:  10.1186/1476-069X-11-18
[9] Rajkumar S, Young BN, Clark ML, et al. Household air pollution from biomass-burning cookstoves and metabolic syndrome, blood lipid concentrations, and waist circumference in Honduran women: a cross-sectional study. Environ Res, 2019; 170, 46−55. doi:  10.1016/j.envres.2018.12.010
[10] Dutta A, Mukherjee B, Das D, et al. Hypertension with elevated levels of oxidized low-density lipoprotein and anticardiolipin antibody in the circulation of premenopausal Indian women chronically exposed to biomass smoke during cooking. Indoor Air, 2011; 21, 165−76. doi:  10.1111/j.1600-0668.2010.00694.x
[11] Brauer M, Roth GA, Aravkin AY, et al. Global Burden and Strength of Evidence for 88 Risk Factors in 204 Countries and 811 Subnational Locations, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet (2024) 403(10440): 2162-203.
[12] Stevens GA, Alkema L, Black RE, et al. Guidelines for accurate and transparent health estimates reporting: the GATHER statement. PLOS Med, 2016; 13, e1002056. doi:  10.1371/journal.pmed.1002056
[13] Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2021 (GBD 2021) Socio-Demographic Index (SDI) 1950–2021. Seattle, United States of America: Institute for Health Metrics and Evaluation (IHME), 2024.
[14] Clegg LX, Hankey BF, Tiwari R, et al. Estimating average annual per cent change in trend analysis. Stat Med, 2009; 28, 3670−82. doi:  10.1002/sim.3733
[15] Rosenberg PS, Check DP, Anderson WF. A web tool for age-period-cohort analysis of cancer incidence and mortality rates. Cancer Epidemiol Biomarkers Prev, 2014; 23, 2296−302. doi:  10.1158/1055-9965.EPI-14-0300
[16] Xie Y, Bowe B, Mokdad AH, et al. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int, 2018; 94, 567−81. doi:  10.1016/j.kint.2018.04.011
[17] Jiang CY, Han K, Yang F, et al. Global, regional, and national prevalence of hearing loss from 1990 to 2019: a trend and health inequality analyses based on the Global Burden of Disease Study 2019. Ageing Res Rev, 2023; 92, 102124. doi:  10.1016/j.arr.2023.102124
[18] Guan SY, Zheng JX, Feng XY, et al. Global burden due to modifiable risk factors for autoimmune diseases, 1990-2021: temporal trends and socio-demographic inequalities. Autoimmun Rev, 2024; 23, 103674. doi:  10.1016/j.autrev.2024.103674
[19] Xie ZM, Yu CL, Cui QM, et al. Global burden of the key components of cardiovascular-kidney-metabolic syndrome. J Am Soc Nephrol, 2025; 36, 1572−84. doi:  10.1681/ASN.0000000658
[20] Abohashem S, Osborne MT, Dar T, et al. A leucopoietic-arterial axis underlying the link between ambient air pollution and cardiovascular disease in humans. Eur Heart J, 2021; 42, 761−72. doi:  10.1093/eurheartj/ehaa982
[21] Münzel T, Gori T, Al-Kindi S, et al. Effects of gaseous and solid constituents of air pollution on endothelial function. Eur Heart J, 2018; 39, 3543−50. doi:  10.1093/eurheartj/ehy481
[22] He F, Shaffer ML, Li X, et al. Individual-level PM2.5 exposure and the time course of impaired heart rate variability: the APACR Study. J Expo Sci Environ Epidemiol, 2011; 21, 65−73. doi:  10.1038/jes.2010.21
[23] McCracken JP, Smith KR, Díaz A, et al. Chimney stove intervention to reduce long-term wood smoke exposure lowers blood pressure among Guatemalan women. Environ Health Perspect, 2007; 115, 996−1001. doi:  10.1289/ehp.9888
[24] McCracken J, Smith KR, Stone P, et al. Intervention to lower household wood smoke exposure in Guatemala reduces ST-segment depression on electrocardiograms. Environ Health Perspect, 2011; 119, 1562−8. doi:  10.1289/ehp.1002834
[25] Walli-Attaei M, Rosengren A, Rangarajan S, et al. Metabolic, behavioural, and psychosocial risk factors and cardiovascular disease in women compared with men in 21 high-income, middle-income, and low-income countries: an analysis of the PURE study. Lancet, 2022; 400, 811−21. doi:  10.1016/S0140-6736(22)01441-6
[26] Hu XM, Nie ZQ, Ou YQ, et al. Long-term exposure to ambient air pollution, circadian syndrome and cardiovascular disease: a nationwide study in China. Sci Total Environ, 2023; 868, 161696. doi:  10.1016/j.scitotenv.2023.161696
[27] Chafe ZA, Brauer M, Klimont Z, et al. Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease. Environ Health Perspect, 2014; 122, 1314−20. doi:  10.1289/ehp.1206340
[28] Martin II WJ, Glass RI, Araj H, et al. Household air pollution in low- and middle-income countries: health risks and research priorities. PLoS Med, 2013; 10, e1001455. doi:  10.1371/journal.pmed.1001455
[29] Pope D, Bruce N, Dherani M, et al. Real-life effectiveness of 'improved' stoves and clean fuels in reducing PM2.5 and CO: systematic review and meta-analysis. Environ Int, 2017; 101, 7−18. doi:  10.1016/j.envint.2017.01.012
[30] Thakur M, Nuyts PAW, Boudewijns EA, et al. Impact of improved cookstoves on women's and child health in low and middle income countries: a systematic review and meta-analysis. Thorax, 2018; 73, 1026−40. doi:  10.1136/thoraxjnl-2017-210952
[31] Meng WJ, Zhong QR, Chen YL, et al. Energy and air pollution benefits of household fuel policies in northern China. Proc Natl Acad Sci USA, 2019; 116, 16773−80. doi:  10.1073/pnas.1904182116
[32] Meng WJ, Kiesewetter G, Zhang SH, et al. Costs and benefits of household fuel policies and alternative strategies in the Jing-Jin-Ji region. Environ Sci Technol, 2023; 57, 21662−72. doi:  10.1021/acs.est.3c01622
[33] Li J, Zhang DY, Su B. The impact of social awareness and lifestyles on household carbon emissions in China. Ecol Econ, 2019; 160, 145−55. doi:  10.1016/j.ecolecon.2019.02.020
[34] Hou BD, Liao H, Huang JL. Household cooking fuel choice and economic poverty: evidence from a nationwide survey in China. Energy Build, 2018; 166, 319−29. doi:  10.1016/j.enbuild.2018.02.012
[35] Wang XY, Wang YS, Zhou K. The impact of energy poverty alleviation on carbon emissions in countries along the belt and road initiative. Sustainability, 2024; 16, 4681. doi:  10.3390/su16114681
[36] Zheng CY, Wu JM, Tang HS, et al. Relationship of ambient humidity with cardiovascular diseases: a prospective study of 24, 510 adults in a general population. Biomed Environ Sci, 2024; 37, 1352−61.