| [1] | Greene NDE, Copp AJ. Neural tube defects. Annu Rev Neurosci, 2014; 37, 221−42. doi: 10.1146/annurev-neuro-062012-170354 |
| [2] | Marean A, Graf A, Zhang Y, et al. Folic acid supplementation can adversely affect murine neural tube closure and embryonic survival. Hum Mol Genet, 2011; 20, 3678−83. doi: 10.1093/hmg/ddr289 |
| [3] | Stover PJ. One-carbon metabolism-genome interactions in folate-associated pathologies. J Nutr, 2009; 139, 2402−5. doi: 10.3945/jn.109.113670 |
| [4] | Copp AJ, De Greene N. Genetics and development of neural tube defects. J Pathol, 2010; 220, 217−30. doi: 10.1002/path.2643 |
| [5] | Mason JB, Choi SW, Liu ZH. Other one-carbon micronutrients and age modulate the effects of folate on colorectal carcinogenesis. Nutr Rev, 2008; 66, S15−7. doi: 10.1111/j.1753-4887.2008.00058.x |
| [6] | Zhang T, Xin RL, Gu X, et al. Maternal serum vitamin B12, folate and homocysteine and the risk of neural tube defects in the offspring in a high-risk area of China. Public Health Nutr, 2009; 12, 680−6. doi: 10.1017/S1368980008002735 |
| [7] | Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell, 2014; 157, 77−94. doi: 10.1016/j.cell.2014.03.008 |
| [8] | Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol, 2015; 12, 381−8. doi: 10.1080/15476286.2015.1020271 |
| [9] | Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014; 505, 344−52. doi: 10.1038/nature12986 |
| [10] | Chen L, Zhang S, Wu J, et al. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene, 2017; 36, 4551−61. doi: 10.1038/onc.2017.89 |
| [11] | Huang MG, Zhong ZY, Lv MX, et al. Comprehensive analysis of differentially expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in bladder carcinoma. Oncotarget, 2016; 7, 47186−200. doi: 10.18632/oncotarget.9706 |
| [12] | Li YW, Zheng FX, Xiao XY, et al. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep, 2017; 18, 1646−59. doi: 10.15252/embr.201643581 |
| [13] | Zhu KP, Ma XL, Zhang CL. LncRNA FENDRR sensitizes doxorubicin-resistance of osteosarcoma cells through down-regulating ABCB1 and ABCC1. Oncotarget, 2017; 8, 71881−93. doi: 10.18632/oncotarget.17985 |
| [14] | Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013; 495, 333−8. doi: 10.1038/nature11928 |
| [15] | Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 2014; 56, 55−66. doi: 10.1016/j.molcel.2014.08.019 |
| [16] | Fragkouli A, Doxakis E. miR-7 and miR-153 protect neurons against MPP+-induced cell death via upregulation of mTOR pathway. Front Cell Neurosci, 2014; 8, 182. |
| [17] | Guo JU, Agarwal V, Guo HL, et al. Expanded identification and characterization of mammalian circular RNAs. Genome Biol, 2014; 15, 409. doi: 10.1186/s13059-014-0409-z |
| [18] | You XT, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci, 2015; 18, 603−10. doi: 10.1038/nn.3975 |
| [19] | Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013; 19, 141−57. doi: 10.1261/rna.035667.112 |
| [20] | Lin SP, Ye S, Long YM, et al. Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem Biophys Res Commun, 2016; 471, 52−6. doi: 10.1016/j.bbrc.2016.01.183 |
| [21] | MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet, 1991; 338, 131−7. doi: 10.1016/0140-6736(91)90133-A |
| [22] | Zhong YJ, Wang YX, Zhang C, et al. Identification of long non-coding RNA and circular RNA in mice after intra-tracheal instillation with fine particulate matter. Chemosphere, 2019; 235, 519−26. doi: 10.1016/j.chemosphere.2019.06.122 |
| [23] | Chen XL, Shen YP, Gao YH, et al. Detection of copy number variants reveals association of cilia genes with neural tube defects. PLoS One, 2013; 8, e54492. doi: 10.1371/journal.pone.0054492 |
| [24] | Chen XL, Guo J, Lei YP, et al. Global DNA hypomethylation is associated with NTD-affected pregnancy: a case-control study. Birth Defects Res A Clin Mol Teratol, 2010; 88, 575−81. doi: 10.1002/bdra.20670 |
| [25] | Wang L, Wang F, Guan J, et al. Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects. Am J Clin Nutr, 2010; 91, 1359−67. doi: 10.3945/ajcn.2009.28858 |
| [26] | Pei P, Cheng XY, Yu J, et al. Folate deficiency induced H2A ubiquitination to lead to downregulated expression of genes involved in neural tube defects. Epigenetics Chromatin, 2019; 12, 69. doi: 10.1186/s13072-019-0312-7 |
| [27] | Zhu KP, Zhang CL, Ma XL, et al. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol Ther, 2019; 27, 518−30. doi: 10.1016/j.ymthe.2019.01.001 |
| [28] | Hung FC, Cheng YC, Sun NK, et al. Identification and functional characterization of zebrafish Gas7 gene in early development. J Neurosci Res, 2013; 91, 51−61. |
| [29] | Yang Y, Ren JD, Huang QL, et al. CircRNA expression profiles and the potential role of CircZFP644 in mice with severe acute pancreatitis via sponging miR-21-3p. Front Genet, 2020; 11, 206. doi: 10.3389/fgene.2020.00206 |
| [30] | Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 2011; 146, 353-8. |
| [31] | Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol, 2016; 937, 3−17. |
| [32] | Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell, 2015; 58, 870−85. doi: 10.1016/j.molcel.2015.03.027 |
| [33] | Chen W, Schuman E. Circular RNAs in brain and other tissues: a functional enigma. Trends Neurosci, 2016; 39, 597−604. doi: 10.1016/j.tins.2016.06.006 |
| [34] | Zuo JH, Wang Q, Zhu BZ, et al. Deciphering the roles of circRNAs on chilling injury in tomato. Biochem Biophys Res Commun, 2016; 479, 132−8. doi: 10.1016/j.bbrc.2016.07.032 |
| [35] | Liu CY, Zhang CC, Yang J, et al. Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget, 2017; 8, 86535−47. doi: 10.18632/oncotarget.21238 |
| [36] | Bhupana JN, Huang BT, Liou GG, et al. Gas7 knockout affects PINK1 expression and mitochondrial dynamics in mouse cortical neurons. FASEB BioAdv, 2020; 2, 166−81. doi: 10.1096/fba.2019-00091 |
| [37] | Chen YQ, Song DF, Gao JX, et al. Circ-Zfp644 acts as a pro-hypertrophic mediator in an Ang-II induced in vitro myocardial hypertrophy model. Cell Biol Int, 2021; 45, 1260−8. doi: 10.1002/cbin.11569 |
| [38] | Zhu HF, Wang JH, Shao YL, et al. Catalpol may improve axonal growth via regulating miR-124 regulated PI3K/AKT/mTOR pathway in neurons after ischemia. Ann Transl Med, 2019; 7, 306. doi: 10.21037/atm.2019.06.25 |
| [39] | Wu FQ, Yin CX, Qi JH, et al. miR-362-5p promotes cell proliferation and cell cycle progression by targeting GAS7 in acute myeloid leukemia. Hum Cell, 2020; 33, 405−15. doi: 10.1007/s13577-019-00319-4 |
| [40] | Ali A, Mahla SB, Reza V, et al. Predicting the possible effect of miR-203a-3p and miR-29a-3p on DNMT3B and GAS7 genes expression. J Integr Bioinform, 2021; 19, 20210016. |