[1] Petermann-Rocha F, Parra-Soto S, Cid V, et al. The association between walking pace and grip strength and all-cause mortality: a prospective analysis from the MAUCO cohort. Maturitas, 2023; 168, 37−43. doi:  10.1016/j.maturitas.2022.11.004
[2] Wu MY, Shu YL, Wang YJ. Exposure to mixture of heavy metals and muscle strength in children and adolescents: a population-based study. Environ Sci Pollut Res, 2022; 29, 60269−77. doi:  10.1007/s11356-022-19916-2
[3] Gbemavo MCJ, Bouchard MF. Concentrations of lead, mercury, selenium, and manganese in blood and hand grip strength among adults living in the United States (NHANES 2011-2014). Toxics, 2021; 9, 189. doi:  10.3390/toxics9080189
[4] Noh HM, Park YS, Lee HJ, et al. Association between sodium density and grip strength among older Korean adults: a nationwide cross-sectional study. Clin Interv Aging, 2019; 14, 2163−71. doi:  10.2147/CIA.S228290
[5] Zhang SM, Gu YQ, Rayamajhi S, et al. Ultra-processed food intake is associated with grip strength decline in middle-aged and older adults: a prospective analysis of the TCLSIH study. Eur J Nutr, 2022; 61, 1331−41. doi:  10.1007/s00394-021-02737-3
[6] Bohannon RW. Grip strength: an indispensable biomarker for older adults. Clin Interv Aging, 2019; 14, 1681−91. doi:  10.2147/CIA.S194543
[7] Luo L, Xu JM, Jiang R, et al. Association between serum copper, zinc and their ratio and handgrip strength among adults: a study from National Health and Nutrition Examination Survey (NHANES) 2011-2014. Environ Sci Pollut Res, 2023; 30, 29100−9.
[8] Qin XY, Song LL, Fan GJ, et al. Sex-specific associations of single metal and metal mixture with handgrip strength: a cross-sectional study among Chinese adults. Environ Sci Pollut Res, 2023; 30, 66585−97. doi:  10.1007/s11356-023-26926-1
[9] Kim I, Son K, Jeong SJ, et al. Sex and diet-related disparities in low handgrip strength among young and middle-aged Koreans: findings based on the Korea national health and nutrition examination survey (KNHANES) from 2014 to 2017. Nutrients, 2022; 14, 3816. doi:  10.3390/nu14183816
[10] Uriu-Adams JY, Keen CL. Copper, oxidative stress, and human health. Mol Aspects Med, 2005; 26, 268−98. doi:  10.1016/j.mam.2005.07.015
[11] Balali-Mood M, Naseri K, Tahergorabi Z, et al. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol, 2021; 12, 643972. doi:  10.3389/fphar.2021.643972
[12] Chandravanshi LP, Gupta R, Shukla RK. Developmental neurotoxicity of arsenic: involvement of oxidative stress and mitochondrial functions. Biol Trace Elem Res, 2018; 186, 185−98. doi:  10.1007/s12011-018-1286-1
[13] Li BM, Xia MS, Zorec R, et al. Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res, 2021; 1752, 147234. doi:  10.1016/j.brainres.2020.147234
[14] Kim KN, Lee MR, Choi YH, et al. Associations of blood cadmium levels with depression and lower handgrip strength in a community-dwelling elderly population: a repeated-measures panel study. J Gerontol A Biol Sci Med Sci, 2016; 71, 1525−30. doi:  10.1093/gerona/glw119
[15] García-Esquinas E, Carrasco-Rios M, Navas-Acien A, et al. Cadmium exposure is associated with reduced grip strength in US adults. Environ Res, 2020; 180, 108819. doi:  10.1016/j.envres.2019.108819
[16] Yang F, Yi XP, Guo J, et al. Association of plasma and urine metals levels with kidney function: a population-based cross-sectional study in China. Chemosphere, 2019; 226, 321−8. doi:  10.1016/j.chemosphere.2019.03.171
[17] Kim BJ, Lee SH, Kwak MK, et al. Inverse relationship between serum hsCRP concentration and hand grip strength in older adults: a nationwide population-based study. Aging (Albany NY), 2018; 10, 2051−61.
[18] Mo XT, Cai JS, Lin YX, et al. Correlation between urinary contents of some metals and fasting plasma glucose levels: a cross-sectional study in China. Ecotoxicol Environ Saf, 2021; 228, 112976. doi:  10.1016/j.ecoenv.2021.112976
[19] Lim SH, Kim YH, Lee JS. Normative data on grip strength in a population-based study with adjusting confounding factors: sixth Korea national health and nutrition examination survey (2014-2015). Int J Environ Res Public Health, 2019; 16, 2235. doi:  10.3390/ijerph16122235
[20] Keil AP, Buckley JP, O'Brien KM, et al. A quantile-based g-computation approach to addressing the effects of exposure mixtures. Environ Health Perspect, 2020; 128, 47004. doi:  10.1289/EHP5838
[21] Lai XF, Yuan Y, Liu M, et al. Individual and joint associations of co-exposure to multiple plasma metals with telomere length among middle-aged and older Chinese in the Dongfeng-Tongji cohort. Environ Res, 2022; 214, 114031. doi:  10.1016/j.envres.2022.114031
[22] Kumar V, Kalita J, Misra UK, et al. A study of dose response and organ susceptibility of copper toxicity in a rat model. J Trace Elem Med Biol, 2015; 29, 269−74. doi:  10.1016/j.jtemb.2014.06.004
[23] Kalita J, Kumar V, Misra UK, et al. Movement disorder in copper toxicity rat model: role of inflammation and apoptosis in the corpus striatum. Neurotox Res, 2020; 37, 904−12. doi:  10.1007/s12640-019-00140-9
[24] Kumar V, Kalita J, Bora HK, et al. Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model. Toxicol Appl Pharmacol, 2016; 293, 37−43. doi:  10.1016/j.taap.2016.01.007
[25] Ma JX, Xie YJ, Zhou Y, et al. Urinary copper, systemic inflammation, and blood lipid profiles: Wuhan-Zhuhai cohort study. Environ Pollut, 2020; 267, 115647. doi:  10.1016/j.envpol.2020.115647
[26] Simona B, Durazzo M, Gambino R, et al. Associations of dietary and serum copper with inflammation, oxidative stress, and metabolic variables in adults. J Nutr, 2008; 138, 305−10. doi:  10.1093/jn/138.2.305
[27] Tuttle CSL, Thang LAN, Maier AB. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res Rev, 2020; 64, 101185. doi:  10.1016/j.arr.2020.101185
[28] Beckett WS, Moore JL, Keogh JP, et al. Acute encephalopathy due to occupational exposure to arsenic. Br J Ind Med, 1986; 43, 66−7.
[29] Chandravanshi LP, Shukla RK, Sultana S, et al. Early life arsenic exposure and brain dopaminergic alterations in rats. Int J Dev Neurosci, 2014; 38, 91−104. doi:  10.1016/j.ijdevneu.2014.08.009
[30] Adedara IA, Fabunmi AT, Ayenitaju FC, et al. Neuroprotective mechanisms of selenium against arsenic-induced behavioral impairments in rats. Neurotoxicology, 2020; 76, 99−110. doi:  10.1016/j.neuro.2019.10.009
[31] Saritha S, Davuljigari CB, Kumar KP, et al. Effects of combined arsenic and lead exposure on the brain monoaminergic system and behavioral functions in rats: Reversal effect of MiADMSA. Toxicol Ind Health, 2019; 35, 89−108. doi:  10.1177/0748233718814990
[32] Markowski VP, Reeve EA, Onos K, et al. Effects of prenatal exposure to sodium arsenite on motor and food-motivated behaviors from birth to adulthood in C57BL6/J mice. Neurotoxicol Teratol, 2012; 34, 221−31. doi:  10.1016/j.ntt.2012.01.001
[33] Nielsen SP. The biological role of strontium. Bone, 2004; 35, 583−8. doi:  10.1016/j.bone.2004.04.026
[34] Kołodziejska B, Stępień N, Kolmas J. The influence of strontium on bone tissue metabolism and its application in osteoporosis treatment. Int J Mol Sci, 2021; 22, 6564. doi:  10.3390/ijms22126564
[35] Bakker AD, Zandieh-Doulabi B, Klein-Nulend J. Strontium ranelate affects signaling from mechanically-stimulated osteocytes towards osteoclasts and osteoblasts. Bone, 2013; 53, 112−9. doi:  10.1016/j.bone.2012.11.044
[36] He H, Liu Y, Tian Q, et al. Relationship of sarcopenia and body composition with osteoporosis. Osteoporos Int, 2016; 27, 473−82. doi:  10.1007/s00198-015-3241-8
[37] Saul D, Harlas B, Ahrabi A, et al. Effect of strontium ranelate on the muscle and vertebrae of ovariectomized rats. Calcif Tissue Int, 2018; 102, 705−19. doi:  10.1007/s00223-017-0374-0
[38] Schroeder HA, Kraemer LA. Cardiovascular mortality, municipal water, and corrosion. Arch Environ Health, 1974; 28, 303−11. doi:  10.1080/00039896.1974.10666497
[39] McCauley PT, Washington IS. Barium bioavailability as the chloride, sulfate, or carbonate salt in the rat. Drug Chem Toxicol, 1983; 6, 209−17. doi:  10.3109/01480548309016025
[40] Poddalgoda D, Macey K, Assad H, et al. Development of biomonitoring equivalents for barium in urine and plasma for interpreting human biomonitoring data. Regul Toxicol Pharmacol, 2017; 86, 303−11. doi:  10.1016/j.yrtph.2017.03.022
[41] Vahidinia A, Samiee F, Faradmal J, et al. Mercury, lead, cadmium, and barium levels in human breast milk and factors affecting their concentrations in Hamadan, Iran. Biol Trace Elem Res, 2019; 187, 32−40. doi:  10.1007/s12011-018-1355-5
[42] Nemeth E, Ganz T. Hepcidin and Iron in Health and Disease. Annu Rev Med, 2023; 74, 261−77. doi:  10.1146/annurev-med-043021-032816
[43] Nakagawa C, Inaba M, Ishimura E, et al. Association of increased serum ferritin with impaired muscle strength/quality in hemodialysis patients. J Ren Nutr, 2016; 26, 253−7. doi:  10.1053/j.jrn.2016.01.011
[44] Dziegala M, Josiak K, Kasztura M, et al. Iron deficiency as energetic insult to skeletal muscle in chronic diseases. J Cachexia Sarcopenia Muscle, 2018; 9, 802−15. doi:  10.1002/jcsm.12314
[45] Gedmantaite A, Celis-Morales CA, Ho F, et al. Associations between diet and handgrip strength: a cross-sectional study from UK Biobank. Mech Ageing Dev, 2020; 189, 111269. doi:  10.1016/j.mad.2020.111269
[46] Singh N, Savanur MA, Srivastava S, et al. A manganese oxide nanozyme prevents the oxidative damage of biomolecules without affecting the endogenous antioxidant system. Nanoscale, 2019; 11, 3855−63. doi:  10.1039/C8NR09397K
[47] Erikson KM, Aschner M. Manganese: its role in disease and health. Met Ions Life Sci, 2019; 19, 253−66.
[48] Gade M, Comfort N, Re DB. Sex-specific neurotoxic effects of heavy metal pollutants: epidemiological, experimental evidence and candidate mechanisms. Environ Res, 2021; 201, 111558. doi:  10.1016/j.envres.2021.111558
[49] Van Rensburg MJ, Van Rooy M, Bester MJ, et al. Oxidative and haemostatic effects of copper, manganese and mercury, alone and in combination at physiologically relevant levels: an ex vivo study. Hum Exp Toxicol, 2019; 38, 419−33. doi:  10.1177/0960327118818236
[50] Butler L, Gennings C, Peli M, et al. Assessing the contributions of metals in environmental media to exposure biomarkers in a region of ferroalloy industry. J Expo Sci Environ Epidemiol, 2019; 29, 674−87. doi:  10.1038/s41370-018-0081-6
[51] Rodríguez-Agudelo Y, Riojas-Rodríguez H, Ríos C, et al. Motor alterations associated with exposure to manganese in the environment in Mexico. Sci Total Environ, 2006; 368, 542−56. doi:  10.1016/j.scitotenv.2006.03.025
[52] Kondakis XG, Makris N, Leotsinidis M, et al. Possible health effects of high manganese concentration in drinking water. Arch Environ Health, 1989; 44, 175−8. doi:  10.1080/00039896.1989.9935883
[53] García-Esquinas E, Navas-Acien A, Pérez-Gómez B, et al. Association of lead and cadmium exposure with frailty in US older adults. Environ Res, 2015; 137, 424−31. doi:  10.1016/j.envres.2015.01.013
[54] Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology, 2011; 283, 65−87. doi:  10.1016/j.tox.2011.03.001
[55] Schaefer MV, Plaganas M, Abernathy MJ, et al. Manganese, arsenic, and carbonate interactions in model Oxic groundwater systems. Environ Sci Technol, 2020; 54, 10621−9. doi:  10.1021/acs.est.0c02084
[56] Ikeda K, Horie-Inoue K, Inoue S. Functions of estrogen and estrogen receptor signaling on skeletal muscle. J Steroid Biochem Mol Biol, 2019; 191, 105375. doi:  10.1016/j.jsbmb.2019.105375
[57] Chidi-Ogbolu N, Baar K. Effect of estrogen on musculoskeletal performance and injury risk. Front Physiol, 2018; 9, 1834. doi:  10.3389/fpls.2018.01834
[58] Javed AA, Mayhew AJ, Shea AK, et al. Association between hormone therapy and muscle mass in postmenopausal women: a systematic review and meta-analysis. JAMA Netw Open, 2019; 2, e1910154. doi:  10.1001/jamanetworkopen.2019.10154
[59] Yoh K, Ikeda K, Horie K, et al. Roles of estrogen, estrogen receptors, and estrogen-related receptors in skeletal muscle: regulation of mitochondrial function. Int J Mol Sci, 2023; 24, 1853. doi:  10.3390/ijms24031853
[60] Sandusky-Beltran LA, Manchester BL, McNay EC. Supplementation with zinc in rats enhances memory and reverses an age-dependent increase in plasma copper. Behav Brain Res, 2017; 333, 179−83. doi:  10.1016/j.bbr.2017.07.007
[61] Baudry J, Kopp JF, Boeing H, et al. Changes of trace element status during aging: results of the EPIC-Potsdam cohort study. Eur J Nutr, 2020; 59, 3045−58. doi:  10.1007/s00394-019-02143-w
[62] Geraci A, Calvani R, Ferri E, et al. Sarcopenia and menopause: the role of estradiol. Front Endocrinol (Lausanne), 2021; 12, 682012. doi:  10.3389/fendo.2021.682012
[63] Gamboa-Loira B, Cebrián ME, López-Carrillo L. Arsenic exposure in northern Mexican women. Salud Publica Mex, 2020; 62, 262−9. doi:  10.21149/11085
[64] Maity JP, Nath B, Kar S, et al. Arsenic-induced health crisis in peri-urban Moyna and Ardebok villages, West Bengal, India: an exposure assessment study. Environ Geochem Health, 2012; 34, 563−74. doi:  10.1007/s10653-012-9458-y