[1] |
Xu ZY, Huang JJ, Liu Y, et al. Current knowledge on the multiform reconstitution of intestinal stem cell niche. World J Stem Cells, 2021; 13, 1564−79. doi: 10.4252/wjsc.v13.i10.1564 |
[2] |
Ji V, Kishore C. The emerging roles of srGAPs in cancer. Mol Biol Rep, 2022; 49, 755−9. doi: 10.1007/s11033-021-06872-2 |
[3] |
McCauley HA, Wells JM. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development, 2017; 144, 958−62. doi: 10.1242/dev.140731 |
[4] |
Li J, Li J Jr, Zhang SY, et al. Culture and characterization of chicken small intestinal crypts. Poult Sci, 2018; 97, 1536−43. doi: 10.3382/ps/pey010 |
[5] |
Gao Y, Chen XY, Tian TR, et al. A lysosome-activated tetrahedral nanobox for encapsulated siRNA delivery. Adv Mater, 2022; 34, e2201731. doi: 10.1002/adma.202201731 |
[6] |
Zhang TX, Zhou M, Xiao DX, et al. Myelosuppression alleviation and hematopoietic regeneration by tetrahedral-framework nucleic-acid nanostructures functionalized with osteogenic growth peptide. Adv Sci (Weinh), 2022; 9, e2202058. doi: 10.1002/advs.202202058 |
[7] |
Zhang T, Tian TR, Zhou RH, et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat Protoc, 2020; 15, 2728−57. doi: 10.1038/s41596-020-0355-z |
[8] |
Zhou J, Li C, Liu XJ, et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med, 2020; 26, 1077−83. doi: 10.1038/s41591-020-0912-6 |
[9] |
Lamers MM, Beumer J, van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes. Science, 2020; 369, 50−4. doi: 10.1126/science.abc1669 |
[10] |
Zhao XY, Li C, Liu XJ, et al. Human intestinal organoids recapitulate enteric infections of enterovirus and coronavirus. Stem Cell Rep, 2021; 16, 493−504. doi: 10.1016/j.stemcr.2021.02.009 |
[11] |
Takayama K. In vitro and animal models for SARS-CoV-2 research. Trends Pharmacol Sci, 2020; 41, 513−7. doi: 10.1016/j.tips.2020.05.005 |
[12] |
Chen D, Tan YW, Li ZC, et al. Organoid cultures derived from patients with papillary thyroid cancer. J Clin Endocrinol Metab, 2021; 106, 1410−26. doi: 10.1210/clinem/dgab020 |
[13] |
Allison SJ. SARS-CoV-2 infection of kidney organoids prevented with soluble human ACE2. Nat Rev Nephrol, 2020; 16, 316. |
[14] |
Ramani A, Müller L, Ostermann PN, et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J, 2020; 39, e106230. doi: 10.15252/embj.2020106230 |
[15] |
Mills RJ, Humphrey SJ, Fortuna PRJ, et al. BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell, 2021; 184, 2167−82.e22. doi: 10.1016/j.cell.2021.03.026 |
[16] |
Peng LY, Zhou YH, Xu WT, et al. Generation of stable induced pluripotent stem-like cells from adult zebra fish fibroblasts. Int J Biol Sci, 2019; 15, 2340−9. doi: 10.7150/ijbs.34010 |
[17] |
Ibrahim M, Xie B, Richardson MK. The growth of endothelial-like cells in zebrafish embryoid body culture. Exp Cell Res, 2020; 392, 112032. doi: 10.1016/j.yexcr.2020.112032 |
[18] |
Schauer A, Pinheiro D, Hauschild R, et al. Zebrafish embryonic explants undergo genetically encoded self-assembly. Elife, 2020; 9, e55190. doi: 10.7554/eLife.55190 |
[19] |
Ibrahim M, Richardson MK. In vitro development of zebrafish vascular networks. Reprod Toxicol, 2017; 70, 102−15. doi: 10.1016/j.reprotox.2017.02.008 |
[20] |
Post Y, Puschhof J, Beumer J, et al. Snake venom gland organoids. Cell, 2020; 180, 233−47. doi: 10.1016/j.cell.2019.11.038 |
[21] |
Angus HCK, Butt AG, Schultz M, et al. Intestinal organoids as a tool for inflammatory bowel disease research. Front Med (Lausanne), 2020; 6, 334. |
[22] |
Kishore C. Epigenetic regulation and promising therapies in colorectal cancer. Curr Mol Pharmacol, 2021; 14, 838−52. doi: 10.2174/1874467214666210126105345 |
[23] |
Kishore C, Bhadra P. Current advancements and future perspectives of immunotherapy in colorectal cancer research. Eur J Pharmacol, 2021; 893, 173819. doi: 10.1016/j.ejphar.2020.173819 |
[24] |
Fujii M, Matano M, Toshimitsu K, et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell, 2018; 23, 787−93.e6. doi: 10.1016/j.stem.2018.11.016 |
[25] |
Kishore C, Sundaram S, Karunagaran D. Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells. Chem Biol Interact, 2019; 309, 108725. doi: 10.1016/j.cbi.2019.108725 |
[26] |
Lindemans CA, Calafiore M, Mertelsmann AM, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature, 2015; 528, 560−4. doi: 10.1038/nature16460 |
[27] |
Lukonin I, Serra D, Challet Meylan L, et al. Phenotypic landscape of intestinal organoid regeneration. Nature, 2020; 586, 275−80. doi: 10.1038/s41586-020-2776-9 |
[28] |
Holmberg FE, Seidelin JB, Yin XL, et al. Culturing human intestinal stem cells for regenerative applications in the treatment of inflammatory bowel disease. EMBO Mol Med, 2017; 9, 558−70. doi: 10.15252/emmm.201607260 |
[29] |
Kishore C, Karunagaran D. Non-coding RNAs as emerging regulators and biomarkers in colorectal cancer. Mol Cell Biochem, 2022; 477, 1817−28. doi: 10.1007/s11010-022-04412-5 |
[30] |
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ Res, 2020; 126, 1456−74. doi: 10.1161/CIRCRESAHA.120.317015 |
[31] |
Bas T, Augenlicht LH. Real time analysis of metabolic profile in ex vivo mouse intestinal crypt organoid cultures. J Vis Exp, 2014; e52026. |
[32] |
Pierzchalska M, Panek M, Grabacka M. The migration and fusion events related to ROCK activity strongly influence the morphology of chicken embryo intestinal organoids. Protoplasma, 2019; 256, 575−81. doi: 10.1007/s00709-018-1312-3 |
[33] |
Ahmad AA, Wang Y, Gracz AD, et al. Optimization of 3-D organotypic primary colonic cultures for organ-on-chip applications. 2014; J Biol Eng. |
[34] |
Acharya M, Arsi K, Donoghue AM, et al. Production and characterization of avian crypt-villus enteroids and the effect of chemicals. BMC Vet Res, 2020; 16, 179. doi: 10.1186/s12917-020-02397-1 |
[35] |
Pierzchalska M, Panek M, Czyrnek M, et al. The three-dimensional culture of epithelial organoids derived from embryonic chicken intestine. In: Turksen K. Organoids. Humana. 2019, 135-44. |
[36] |
McCracken KW, Catá EM, Crawford CM, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 2014; 516, 400−4. doi: 10.1038/nature13863 |
[37] |
Arioka Y, Ito H, Hirata A, et al. Behavior of leucine-rich repeat-containing G-protein coupled receptor 5-expressing cells in the reprogramming process. Stem Cell Res, 2017; 20, 1−9. doi: 10.1016/j.scr.2017.01.012 |
[38] |
Barlow LA. Progress and renewal in gustation: new insights into taste bud development. Development, 2015; 142, 3620−9. doi: 10.1242/dev.120394 |
[39] |
Ren WW, Lewandowski BC, Watson J, et al. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc Natl Acad Sci USA, 2014; 111, 16401−6. doi: 10.1073/pnas.1409064111 |
[40] |
Sui Y, Zhang SQ, Li YL, et al. Generation of functional salivary gland tissue from human submandibular gland stem/progenitor cells. Stem Cell Res Ther, 2020; 11, 127. doi: 10.1186/s13287-020-01628-4 |
[41] |
Miller AJ, Dye BR, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc, 2019; 14, 518−40. doi: 10.1038/s41596-018-0104-8 |
[42] |
Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, et al. Long-term expanding human airway organoids for disease modeling. EMBO J, 2019; 38, e100300. doi: 10.15252/embj.2018100300 |
[43] |
Rock JR, Onaitis MW, Rawlins EL, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA, 2009; 106, 12771−5. doi: 10.1073/pnas.0906850106 |
[44] |
McQualter JL, Yuen K, Williams B, et al. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci USA, 2010; 107, 1414−9. doi: 10.1073/pnas.0909207107 |
[45] |
Chapman HA, Li XP, Alexander JP, et al. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest, 2011; 121, 2855−62. doi: 10.1172/JCI57673 |
[46] |
Kim M, Mun H, Sung CO, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun, 2019; 10, 3991. doi: 10.1038/s41467-019-11867-6 |
[47] |
Li YS, Chan JWY, Lau RWH, et al. Organoids in Lung Cancer Management. Front Surg, 2021; 8, 753801. doi: 10.3389/fsurg.2021.753801 |
[48] |
Tan Q, Choi KM, Sicard D, et al. Human Airway Organoid Engineering as a Step toward Lung Regeneration and Disease Modeling. Biomaterials, 2017; 113, 118−32. doi: 10.1016/j.biomaterials.2016.10.046 |
[49] |
Mun SJ, Ryu JS, Lee MO, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J Hepatol, 2019; 71, 970−85. doi: 10.1016/j.jhep.2019.06.030 |
[50] |
Olgasi C, Cucci A, Follenzi A. iPSC-derived liver organoids: a journey from drug screening, to disease modeling, arriving to regenerative medicine. Int J Mol Sci, 2020; 21, 6215. doi: 10.3390/ijms21176215 |
[51] |
Hu HL, Gehart H, Artegiani B, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell, 2018; 175, 1591−606.e19. doi: 10.1016/j.cell.2018.11.013 |
[52] |
Sorrentino G, Rezakhani S, Yildiz E, et al. Mechano-modulatory synthetic niches for liver organoid derivation. Nat Commun, 2020; 11, 3416. doi: 10.1038/s41467-020-17161-0 |
[53] |
Wu FF, Wu D, Ren Y, et al. Generation of hepatobiliary organoids from human induced pluripotent stem cells. J Hepatol, 2019; 70, 1145−58. doi: 10.1016/j.jhep.2018.12.028 |
[54] |
Kurmann AA, Serra M, Hawkins F, et al. Regeneration of thyroid function by transplantation of differentiated pluripotent stem cells. Cell Stem Cell, 2015; 17, 527−42. doi: 10.1016/j.stem.2015.09.004 |
[55] |
Ogundipe VML, Groen AH, Hosper N, et al. Generation and differentiation of adult tissue-derived human thyroid organoids. Stem Cell Rep, 2021; 16, 913−25. doi: 10.1016/j.stemcr.2021.02.011 |
[56] |
Chen KG, Park K, Spence JR. Studying SARS-CoV-2 infectivity and therapeutic responses with complex organoids. Nat Cell Biol, 2021; 23, 822−33. doi: 10.1038/s41556-021-00721-x |
[57] |
Arufe MC, Lu M, Lin RY. Differentiation of murine embryonic stem cells to thyrocytes requires insulin and insulin-like growth factor-1. Biochem. Biophys. Res. Commun. 2009;264–70. |
[58] |
Liang JQ, Qian J, Yang L, et al. Modeling human thyroid development by fetal tissue-derived organoid culture. Adv Sci, 2022; 9 e2105568. |
[59] |
Uchimura K, Wu HJ, Yoshimura Y, et al. Human pluripotent stem cell-derived kidney organoids with improved collecting duct maturation and injury modeling. Cell Rep, 2020; 33, 108514. doi: 10.1016/j.celrep.2020.108514 |
[60] |
Shankar AS, Du ZY, Mora HT, et al. Human kidney organoids produce functional renin. Kidney Int, 2021; 99, 134−47. doi: 10.1016/j.kint.2020.08.008 |
[61] |
Garreta E, Nauryzgaliyeva Z, Montserrat N. Human induced pluripotent stem cell-derived kidney organoids toward clinical implementations. Curr Opin Biomed Eng, 2021; 20, 100346. doi: 10.1016/j.cobme.2021.100346 |
[62] |
Yousef Yengej FA, Jansen J, Rookmaaker MB, et al. Kidney organoids and tubuloids. Cells, 2020; 9, 1326. doi: 10.3390/cells9061326 |
[63] |
Clevers H. Modeling Development and Disease with Organoids. Cell, 2016; 1586–97. |
[64] |
Calandrini C, Schutgens F, Oka R, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat Commun, 2020; 11, 1310. doi: 10.1038/s41467-020-15155-6 |
[65] |
Wang QZ, Xiong YC, Zhang S, et al. The dynamics of metabolic characterization in iPSC-derived kidney organoid differentiation via a comparative omics approach. Front Genet, 2021; 12, 632810. doi: 10.3389/fgene.2021.632810 |
[66] |
Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature, 2019; 565, 505−10. doi: 10.1038/s41586-018-0858-8 |
[67] |
Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab, 2013; 17, 20−33. doi: 10.1016/j.cmet.2012.11.012 |
[68] |
Wimmer RA, Leopoldi A, Aichinger M, et al. Generation of blood vessel organoids from human pluripotent stem cells. Nat Protoc, 2019; 14, 3082−100. doi: 10.1038/s41596-019-0213-z |
[69] |
Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature, 2013; 501, 373−9. doi: 10.1038/nature12517 |
[70] |
Pham MT, Pollock KM, Rose MD, et al. Generation of human vascularized brain organoids. NeuroReport, 2018; 29, 588−93. doi: 10.1097/WNR.0000000000001014 |
[71] |
Velasco S, Kedaigle AJ, Simmons SK, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature, 2019; 570, 523−7. doi: 10.1038/s41586-019-1289-x |
[72] |
Ogawa J, Pao GM, Shokhirev MN, et al. Glioblastoma model using human cerebral organoids. Cell Rep, 2018; 23, 1220−9. doi: 10.1016/j.celrep.2018.03.105 |
[73] |
Shi YC, Sun L, Wang MD, et al. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol, 2020; 18, e3000705. doi: 10.1371/journal.pbio.3000705 |
[74] |
Qian XY, Jacob F, Song MM, et al. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc, 2018; 13, 565−80. doi: 10.1038/nprot.2017.152 |
[75] |
Alonso AD, Di Clerico J, Li B, et al. Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. 2010; J Biol Chem. 30851–60. |
[76] |
Bagley JA, Reumann D, Bian S, et al. Fused cerebral organoids model interactions between brain regions. Nat Methods, 2017; 14, 743−51. doi: 10.1038/nmeth.4304 |
[77] |
Lancaster MA, Corsini NS, Wolfinger S, et al. Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol, 2017; 35, 659−66. doi: 10.1038/nbt.3906 |
[78] |
Kishore C, Bhadra P. Targeting brain cancer cells by nanorobot, a promising nanovehicle: new challenges and future perspectives. CNS Neurol Disord Drug Targets, 2021; 20, 531−9. doi: 10.2174/1871527320666210526154801 |
[79] |
Trujillo CA, Gao R, Negraes PD, et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell, 2019; 25, 558−69.e7. doi: 10.1016/j.stem.2019.08.002 |
[80] |
Muguruma K, Nishiyama A, Kawakami H, et al. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep, 2015; 10, 537−50. doi: 10.1016/j.celrep.2014.12.051 |
[81] |
Bergmann S, Lawler SE, Qu Y, et al. Blood-brain-barrier organoids for investigating the permeability of CNS therapeutics. Nat Protoc, 2018; 13, 2827−43. doi: 10.1038/s41596-018-0066-x |
[82] |
Linkous A, Balamatsias D, Snuderl M, et al. Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep, 2019; 26 3203-11. |
[83] |
Zecevic N, Chen Y, Filipovic R. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J. Comp. Neurol. 2005; 109–22. |
[84] |
Cederquist GY, Asciolla JJ, Tchieu J, et al. Specification of positional identity in forebrain organoids. Nat Biotechnol, 2019; 37, 436−44. doi: 10.1038/s41587-019-0085-3 |
[85] |
Arzua T, Yan YS, Jiang CS, et al. Modeling alcohol-induced neurotoxicity using human induced pluripotent stem cell-derived three-dimensional cerebral organoids. Transl Psychiatry, 2020; 10, 347. doi: 10.1038/s41398-020-01029-4 |
[86] |
Kathuria A, Lopez-Lengowski K, Jagtap SS, et al. Transcriptomic landscape and functional characterization of induced pluripotent stem cell-derived cerebral organoids in schizophrenia. JAMA Psychiatry, 2020; 77, 745−54. doi: 10.1001/jamapsychiatry.2020.0196 |
[87] |
Brémond Martin C, Simon Chane C, Clouchoux C, et al. Recent trends and perspectives in cerebral organoids imaging and analysis. Front Neurosci, 2021; 15, 629067. doi: 10.3389/fnins.2021.629067 |
[88] |
Zilova L, Weinhardt V, Tavhelidse T, et al. Fish primary embryonic pluripotent cells assemble into retinal tissue mirroring in vivo early eye development. Elife, 2021; 10, e66998. doi: 10.7554/eLife.66998 |
[89] |
Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 2011; 472, 51−6. doi: 10.1038/nature09941 |
[90] |
Kuwahara A, Ozone C, Nakano T, et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun, 2015; 6, 6286. doi: 10.1038/ncomms7286 |
[91] |
Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell, 2012; 10, 771−85. doi: 10.1016/j.stem.2012.05.009 |
[92] |
Regent F, Chen HY, Kelley RA, et al. A simple and efficient method for generating human retinal organoids. Mol Vis, 2020; 26, 97−105. |
[93] |
Cowan CS, Renner M, De Gennaro M, et al. Cell types of the human retina and its organoids at single-cell resolution. Cell, 2020; 182, 1623−40.e34. doi: 10.1016/j.cell.2020.08.013 |
[94] |
Kim S, Lowe A, Dharmat R, et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proc Natl Acad Sci USA, 2019; 116, 10824−33. doi: 10.1073/pnas.1901572116 |
[95] |
Wang DS, Wang JQ, Bai LY, et al. Long-term expansion of pancreatic islet organoids from resident Procr+ progenitors. Cell, 2020; 180, 1198−211.e19. doi: 10.1016/j.cell.2020.02.048 |
[96] |
Boj SF, Hwang CI, Baker LA, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell, 2015; 160, 324−38. doi: 10.1016/j.cell.2014.12.021 |
[97] |
Boretto M, Cox B, Noben M, et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development, 2017; 144, 1775−86. |
[98] |
Luddi A, Pavone V, Semplici B, et al. Organoids of human endometrium: a powerful in vitro model for the endometrium-embryo cross-talk at the implantation site. Cells, 2020; 9, 1121. doi: 10.3390/cells9051121 |
[99] |
Turco MY, Gardner L, Hughes J, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol, 2017; 19, 568−77. doi: 10.1038/ncb3516 |
[100] |
Duarte AA, Gogola E, Sachs N, et al. BRCA-deficient mouse mammary tumor organoids to study cancer-drug resistance. Nat Methods, 2018; 15, 134−40. doi: 10.1038/nmeth.4535 |
[101] |
Drost J, Karthaus WR, Gao D, et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc, 2016; 11, 347−58. doi: 10.1038/nprot.2016.006 |
[102] |
Pappas KJ, Choi D, Sawyers CL, et al. Prostate organoid cultures as tools to translate genotypes and mutational profiles to pharmacological responses. J Vis Exp, 2019; 60346. |
[103] |
Guo WX, Li L, He J, et al. Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips. Nat Genet, 2020; 52, 908−18. doi: 10.1038/s41588-020-0642-1 |
[104] |
Karthaus WR, Iaquinta PJ, Drost J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell, 2014; 159, 163−75. doi: 10.1016/j.cell.2014.08.017 |
[105] |
Chua CW, Shibata M, Lei M, et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat Cell Biol, 2014; 16, 951−61. doi: 10.1038/ncb3047 |
[106] |
Ma L, Li JW, Nie Q, et al. Organoid culture of human prostate cancer cell lines LNCaP and C4-2B. Am J Clin Exp Urol, 2017; 5, 25−33. |
[107] |
Chen XW, Li C, Chen Y, et al. Differentiation of human induced pluripotent stem cells into Leydig-like cells with molecular compounds. Cell Death Dis, 2019; 10, 220. doi: 10.1038/s41419-019-1461-0 |
[108] |
Mullenders J, de Jongh E, Brousali A, et al. Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc Natl Acad Sci USA, 2019; 116, 4567−74. doi: 10.1073/pnas.1803595116 |
[109] |
Sakib S, Uchida A, Valenzuela-Leon P, et al. Formation of organotypic testicular organoids in microwell culture. Biol Reprod, 2019; 100, 1648−60. doi: 10.1093/biolre/ioz053 |
[110] |
Rodríguez Gutiérrez D, Eid W, Biason-Lauber A. A human gonadal cell model from induced pluripotent stem cells. Front Genet, 2018; 9, 498. doi: 10.3389/fgene.2018.00498 |
[111] |
Chen H, Ge RS, Zirkin BR. Leydig cells: from stem cells to aging. Mol. Cell Endocrinol, 2009; 306, 9−16. doi: 10.1016/j.mce.2009.01.023 |
[112] |
Sakib S, Goldsmith T, Voigt A, et al. Testicular organoids to study cell-cell interactions in the mammalian testis. Andrology, 2020; 8, 835−41. doi: 10.1111/andr.12680 |
[113] |
Sakib S, Yu Y, Voigt A, et al. Generation of porcine testicular organoids with testis specific architecture using microwell culture. J Vis Exp, 2019; 152. |
[114] |
Baert Y, De Kock J, Alves-Lopes JP, et al. Primary human testicular cells self-organize into organoids with testicular properties. Stem Cell Rep, 2017; 8, 30−8. doi: 10.1016/j.stemcr.2016.11.012 |
[115] |
Schulze ML, Lemoine MD, Fischer AW, et al. Dissecting hiPSC-CM pacemaker function in a cardiac organoid model. Biomaterials, 2019; 206, 133−45. doi: 10.1016/j.biomaterials.2019.03.023 |
[116] |
Drakhlis L, Biswanath S, Farr CM, et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol, 2021; 39, 737−46. doi: 10.1038/s41587-021-00815-9 |
[117] |
Richards DJ, Li Y, Kerr CM, et al. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat Biomed Eng, 2020; 4, 446−62. doi: 10.1038/s41551-020-0539-4 |
[118] |
Harrison RK. Phase II and phase III failures: 2013-2015. Nat Rev Drug Discov, 2016; 15, 817−8. doi: 10.1038/nrd.2016.184 |
[119] |
Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol, 2020; 21, 571−84. doi: 10.1038/s41580-020-0259-3 |
[120] |
de Poel E, Lefferts JW, Beekman JM. Intestinal organoids for cystic Fibrosis research. J Cyst Fibros, 2020; 19, S60−4. |
[121] |
Berkers G, van Mourik P, Vonk AM, et al. Rectal organoids enable personalized treatment of cystic fibrosis. Cell Rep, 2019; 26, 1701−8.e3. doi: 10.1016/j.celrep.2019.01.068 |
[122] |
Driehuis E, van Hoeck A, Moore K, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc Natl Acad Sci USA, 2019; 116, 26580−90. doi: 10.1073/pnas.1911273116 |
[123] |
Saito Y, Muramatsu T, Kanai Y, et al. Establishment of patient-derived organoids and drug screening for biliary tract carcinoma. Cell Rep, 2019; 27, 1265−76.e4. doi: 10.1016/j.celrep.2019.03.088 |
[124] |
Ludikhuize MC, Meerlo M, Burgering BMT, et al. Protocol to profile the bioenergetics of organoids using Seahorse. STAR Protoc, 2021; 2, 100386. doi: 10.1016/j.xpro.2021.100386 |
[125] |
Boj SF, Vonk AM, Statia M, et al. Forskolin-induced swelling in intestinal organoids: an in vitro assay for assessing drug response in cystic fibrosis patients. J Vis Exp, 2017; 11, 55159. |
[126] |
Crowson MG, Ranisau J, Eskander A, et al. A contemporary review of machine learning in otolaryngology–head and neck surgery. Laryngoscope, 2020; 130, 45−51. doi: 10.1002/lary.27850 |
[127] |
Mohan S, Thirumalai C, Srivastava G. Effective heart disease prediction using hybrid machine learning techniques. IEEE Access, 2019; 7, 81542−54. doi: 10.1109/ACCESS.2019.2923707 |
[128] |
Rahman AKMS, Shamrat FMJM, Tasnim Z, et al. A comparative study on liver disease prediction using supervised machine learning algorithms. Int J Sci Technol Res, 2019; 8, 419−22. |
[129] |
Chang YH, Thibault G, Madin O, et al. Deep learning based Nucleus Classification in pancreas histological images. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. 2017, 672-5. |
[130] |
Štĕpánek L, Habarta F, Malá I, et al. A machine-learning approach to survival time-event predicting: initial analyses using stomach cancer data. In: 2020 International Conference on e-Health and Bioengineering. IEEE. 2020, 1-4. |
[131] |
Qin JM, Chen L, Liu YH, et al. A machine learning methodology for diagnosing chronic kidney disease. IEEE Access, 2019; 8, 20991−1002. |
[132] |
Kadir T, Fergus G. Lung cancer prediction using machine learning and advanced imaging techniques. Transl Lung Cancer Res, 2018; 7, 304−12. doi: 10.21037/tlcr.2018.05.15 |
[133] |
Das HS, Das A, Neog A, et al. Breast cancer detection: shallow convolutional neural network against deep convolutional neural networks based approach. Front Genet, 2023; 13, 1097207. doi: 10.3389/fgene.2022.1097207 |
[134] |
Munquad S, Si T, Mallik S, et al. A deep learning-based framework for supporting clinical diagnosis of glioblastoma subtypes. Front Genet, 2022; 13, 855420. doi: 10.3389/fgene.2022.855420 |
[135] |
Gaur L, Bhandari M, Razdan T, et al. Explanation-driven deep learning model for prediction of brain tumour status using MRI image data. Front Genet, 2022; 13, 822666. doi: 10.3389/fgene.2022.822666 |
[136] |
Zhang MM, Yang KL, Cui YC, et al. Current trends and research topics regarding intestinal organoids: an overview based on bibliometrics. Front Cell Dev Biol, 2021; 9, 609452. doi: 10.3389/fcell.2021.609452 |
[137] |
Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet, 2018; 19, 671−87. doi: 10.1038/s41576-018-0051-9 |
[138] |
Lehmann R, Lee CM, Shugart EC, et al. Human organoids: a new dimension in cell biology. Mol Biol Cell, 2019; 30, 1129−37. doi: 10.1091/mbc.E19-03-0135 |