[1] Xu ZY, Huang JJ, Liu Y, et al. Current knowledge on the multiform reconstitution of intestinal stem cell niche. World J Stem Cells, 2021; 13, 1564−79. doi:  10.4252/wjsc.v13.i10.1564
[2] Ji V, Kishore C. The emerging roles of srGAPs in cancer. Mol Biol Rep, 2022; 49, 755−9. doi:  10.1007/s11033-021-06872-2
[3] McCauley HA, Wells JM. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development, 2017; 144, 958−62. doi:  10.1242/dev.140731
[4] Li J, Li J Jr, Zhang SY, et al. Culture and characterization of chicken small intestinal crypts. Poult Sci, 2018; 97, 1536−43. doi:  10.3382/ps/pey010
[5] Gao Y, Chen XY, Tian TR, et al. A lysosome-activated tetrahedral nanobox for encapsulated siRNA delivery. Adv Mater, 2022; 34, e2201731. doi:  10.1002/adma.202201731
[6] Zhang TX, Zhou M, Xiao DX, et al. Myelosuppression alleviation and hematopoietic regeneration by tetrahedral-framework nucleic-acid nanostructures functionalized with osteogenic growth peptide. Adv Sci (Weinh), 2022; 9, e2202058. doi:  10.1002/advs.202202058
[7] Zhang T, Tian TR, Zhou RH, et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat Protoc, 2020; 15, 2728−57. doi:  10.1038/s41596-020-0355-z
[8] Zhou J, Li C, Liu XJ, et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med, 2020; 26, 1077−83. doi:  10.1038/s41591-020-0912-6
[9] Lamers MM, Beumer J, van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes. Science, 2020; 369, 50−4. doi:  10.1126/science.abc1669
[10] Zhao XY, Li C, Liu XJ, et al. Human intestinal organoids recapitulate enteric infections of enterovirus and coronavirus. Stem Cell Rep, 2021; 16, 493−504. doi:  10.1016/j.stemcr.2021.02.009
[11] Takayama K. In vitro and animal models for SARS-CoV-2 research. Trends Pharmacol Sci, 2020; 41, 513−7. doi:  10.1016/j.tips.2020.05.005
[12] Chen D, Tan YW, Li ZC, et al. Organoid cultures derived from patients with papillary thyroid cancer. J Clin Endocrinol Metab, 2021; 106, 1410−26. doi:  10.1210/clinem/dgab020
[13] Allison SJ. SARS-CoV-2 infection of kidney organoids prevented with soluble human ACE2. Nat Rev Nephrol, 2020; 16, 316.
[14] Ramani A, Müller L, Ostermann PN, et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J, 2020; 39, e106230. doi:  10.15252/embj.2020106230
[15] Mills RJ, Humphrey SJ, Fortuna PRJ, et al. BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell, 2021; 184, 2167−82.e22. doi:  10.1016/j.cell.2021.03.026
[16] Peng LY, Zhou YH, Xu WT, et al. Generation of stable induced pluripotent stem-like cells from adult zebra fish fibroblasts. Int J Biol Sci, 2019; 15, 2340−9. doi:  10.7150/ijbs.34010
[17] Ibrahim M, Xie B, Richardson MK. The growth of endothelial-like cells in zebrafish embryoid body culture. Exp Cell Res, 2020; 392, 112032. doi:  10.1016/j.yexcr.2020.112032
[18] Schauer A, Pinheiro D, Hauschild R, et al. Zebrafish embryonic explants undergo genetically encoded self-assembly. Elife, 2020; 9, e55190. doi:  10.7554/eLife.55190
[19] Ibrahim M, Richardson MK. In vitro development of zebrafish vascular networks. Reprod Toxicol, 2017; 70, 102−15. doi:  10.1016/j.reprotox.2017.02.008
[20] Post Y, Puschhof J, Beumer J, et al. Snake venom gland organoids. Cell, 2020; 180, 233−47. doi:  10.1016/j.cell.2019.11.038
[21] Angus HCK, Butt AG, Schultz M, et al. Intestinal organoids as a tool for inflammatory bowel disease research. Front Med (Lausanne), 2020; 6, 334.
[22] Kishore C. Epigenetic regulation and promising therapies in colorectal cancer. Curr Mol Pharmacol, 2021; 14, 838−52. doi:  10.2174/1874467214666210126105345
[23] Kishore C, Bhadra P. Current advancements and future perspectives of immunotherapy in colorectal cancer research. Eur J Pharmacol, 2021; 893, 173819. doi:  10.1016/j.ejphar.2020.173819
[24] Fujii M, Matano M, Toshimitsu K, et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell, 2018; 23, 787−93.e6. doi:  10.1016/j.stem.2018.11.016
[25] Kishore C, Sundaram S, Karunagaran D. Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells. Chem Biol Interact, 2019; 309, 108725. doi:  10.1016/j.cbi.2019.108725
[26] Lindemans CA, Calafiore M, Mertelsmann AM, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature, 2015; 528, 560−4. doi:  10.1038/nature16460
[27] Lukonin I, Serra D, Challet Meylan L, et al. Phenotypic landscape of intestinal organoid regeneration. Nature, 2020; 586, 275−80. doi:  10.1038/s41586-020-2776-9
[28] Holmberg FE, Seidelin JB, Yin XL, et al. Culturing human intestinal stem cells for regenerative applications in the treatment of inflammatory bowel disease. EMBO Mol Med, 2017; 9, 558−70. doi:  10.15252/emmm.201607260
[29] Kishore C, Karunagaran D. Non-coding RNAs as emerging regulators and biomarkers in colorectal cancer. Mol Cell Biochem, 2022; 477, 1817−28. doi:  10.1007/s11010-022-04412-5
[30] Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ Res, 2020; 126, 1456−74. doi:  10.1161/CIRCRESAHA.120.317015
[31] Bas T, Augenlicht LH. Real time analysis of metabolic profile in ex vivo mouse intestinal crypt organoid cultures. J Vis Exp, 2014; e52026.
[32] Pierzchalska M, Panek M, Grabacka M. The migration and fusion events related to ROCK activity strongly influence the morphology of chicken embryo intestinal organoids. Protoplasma, 2019; 256, 575−81. doi:  10.1007/s00709-018-1312-3
[33] Ahmad AA, Wang Y, Gracz AD, et al. Optimization of 3-D organotypic primary colonic cultures for organ-on-chip applications. 2014; J Biol Eng.
[34] Acharya M, Arsi K, Donoghue AM, et al. Production and characterization of avian crypt-villus enteroids and the effect of chemicals. BMC Vet Res, 2020; 16, 179. doi:  10.1186/s12917-020-02397-1
[35] Pierzchalska M, Panek M, Czyrnek M, et al. The three-dimensional culture of epithelial organoids derived from embryonic chicken intestine. In: Turksen K. Organoids. Humana. 2019, 135-44.
[36] McCracken KW, Catá EM, Crawford CM, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 2014; 516, 400−4. doi:  10.1038/nature13863
[37] Arioka Y, Ito H, Hirata A, et al. Behavior of leucine-rich repeat-containing G-protein coupled receptor 5-expressing cells in the reprogramming process. Stem Cell Res, 2017; 20, 1−9. doi:  10.1016/j.scr.2017.01.012
[38] Barlow LA. Progress and renewal in gustation: new insights into taste bud development. Development, 2015; 142, 3620−9. doi:  10.1242/dev.120394
[39] Ren WW, Lewandowski BC, Watson J, et al. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc Natl Acad Sci USA, 2014; 111, 16401−6. doi:  10.1073/pnas.1409064111
[40] Sui Y, Zhang SQ, Li YL, et al. Generation of functional salivary gland tissue from human submandibular gland stem/progenitor cells. Stem Cell Res Ther, 2020; 11, 127. doi:  10.1186/s13287-020-01628-4
[41] Miller AJ, Dye BR, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc, 2019; 14, 518−40. doi:  10.1038/s41596-018-0104-8
[42] Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, et al. Long-term expanding human airway organoids for disease modeling. EMBO J, 2019; 38, e100300. doi:  10.15252/embj.2018100300
[43] Rock JR, Onaitis MW, Rawlins EL, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA, 2009; 106, 12771−5. doi:  10.1073/pnas.0906850106
[44] McQualter JL, Yuen K, Williams B, et al. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci USA, 2010; 107, 1414−9. doi:  10.1073/pnas.0909207107
[45] Chapman HA, Li XP, Alexander JP, et al. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest, 2011; 121, 2855−62. doi:  10.1172/JCI57673
[46] Kim M, Mun H, Sung CO, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun, 2019; 10, 3991. doi:  10.1038/s41467-019-11867-6
[47] Li YS, Chan JWY, Lau RWH, et al. Organoids in Lung Cancer Management. Front Surg, 2021; 8, 753801. doi:  10.3389/fsurg.2021.753801
[48] Tan Q, Choi KM, Sicard D, et al. Human Airway Organoid Engineering as a Step toward Lung Regeneration and Disease Modeling. Biomaterials, 2017; 113, 118−32. doi:  10.1016/j.biomaterials.2016.10.046
[49] Mun SJ, Ryu JS, Lee MO, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J Hepatol, 2019; 71, 970−85. doi:  10.1016/j.jhep.2019.06.030
[50] Olgasi C, Cucci A, Follenzi A. iPSC-derived liver organoids: a journey from drug screening, to disease modeling, arriving to regenerative medicine. Int J Mol Sci, 2020; 21, 6215. doi:  10.3390/ijms21176215
[51] Hu HL, Gehart H, Artegiani B, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell, 2018; 175, 1591−606.e19. doi:  10.1016/j.cell.2018.11.013
[52] Sorrentino G, Rezakhani S, Yildiz E, et al. Mechano-modulatory synthetic niches for liver organoid derivation. Nat Commun, 2020; 11, 3416. doi:  10.1038/s41467-020-17161-0
[53] Wu FF, Wu D, Ren Y, et al. Generation of hepatobiliary organoids from human induced pluripotent stem cells. J Hepatol, 2019; 70, 1145−58. doi:  10.1016/j.jhep.2018.12.028
[54] Kurmann AA, Serra M, Hawkins F, et al. Regeneration of thyroid function by transplantation of differentiated pluripotent stem cells. Cell Stem Cell, 2015; 17, 527−42. doi:  10.1016/j.stem.2015.09.004
[55] Ogundipe VML, Groen AH, Hosper N, et al. Generation and differentiation of adult tissue-derived human thyroid organoids. Stem Cell Rep, 2021; 16, 913−25. doi:  10.1016/j.stemcr.2021.02.011
[56] Chen KG, Park K, Spence JR. Studying SARS-CoV-2 infectivity and therapeutic responses with complex organoids. Nat Cell Biol, 2021; 23, 822−33. doi:  10.1038/s41556-021-00721-x
[57] Arufe MC, Lu M, Lin RY. Differentiation of murine embryonic stem cells to thyrocytes requires insulin and insulin-like growth factor-1. Biochem. Biophys. Res. Commun. 2009;264–70.
[58] Liang JQ, Qian J, Yang L, et al. Modeling human thyroid development by fetal tissue-derived organoid culture. Adv Sci, 2022; 9 e2105568.
[59] Uchimura K, Wu HJ, Yoshimura Y, et al. Human pluripotent stem cell-derived kidney organoids with improved collecting duct maturation and injury modeling. Cell Rep, 2020; 33, 108514. doi:  10.1016/j.celrep.2020.108514
[60] Shankar AS, Du ZY, Mora HT, et al. Human kidney organoids produce functional renin. Kidney Int, 2021; 99, 134−47. doi:  10.1016/j.kint.2020.08.008
[61] Garreta E, Nauryzgaliyeva Z, Montserrat N. Human induced pluripotent stem cell-derived kidney organoids toward clinical implementations. Curr Opin Biomed Eng, 2021; 20, 100346. doi:  10.1016/j.cobme.2021.100346
[62] Yousef Yengej FA, Jansen J, Rookmaaker MB, et al. Kidney organoids and tubuloids. Cells, 2020; 9, 1326. doi:  10.3390/cells9061326
[63] Clevers H. Modeling Development and Disease with Organoids. Cell, 2016; 1586–97.
[64] Calandrini C, Schutgens F, Oka R, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat Commun, 2020; 11, 1310. doi:  10.1038/s41467-020-15155-6
[65] Wang QZ, Xiong YC, Zhang S, et al. The dynamics of metabolic characterization in iPSC-derived kidney organoid differentiation via a comparative omics approach. Front Genet, 2021; 12, 632810. doi:  10.3389/fgene.2021.632810
[66] Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature, 2019; 565, 505−10. doi:  10.1038/s41586-018-0858-8
[67] Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab, 2013; 17, 20−33. doi:  10.1016/j.cmet.2012.11.012
[68] Wimmer RA, Leopoldi A, Aichinger M, et al. Generation of blood vessel organoids from human pluripotent stem cells. Nat Protoc, 2019; 14, 3082−100. doi:  10.1038/s41596-019-0213-z
[69] Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature, 2013; 501, 373−9. doi:  10.1038/nature12517
[70] Pham MT, Pollock KM, Rose MD, et al. Generation of human vascularized brain organoids. NeuroReport, 2018; 29, 588−93. doi:  10.1097/WNR.0000000000001014
[71] Velasco S, Kedaigle AJ, Simmons SK, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature, 2019; 570, 523−7. doi:  10.1038/s41586-019-1289-x
[72] Ogawa J, Pao GM, Shokhirev MN, et al. Glioblastoma model using human cerebral organoids. Cell Rep, 2018; 23, 1220−9. doi:  10.1016/j.celrep.2018.03.105
[73] Shi YC, Sun L, Wang MD, et al. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol, 2020; 18, e3000705. doi:  10.1371/journal.pbio.3000705
[74] Qian XY, Jacob F, Song MM, et al. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc, 2018; 13, 565−80. doi:  10.1038/nprot.2017.152
[75] Alonso AD, Di Clerico J, Li B, et al. Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. 2010; J Biol Chem. 30851–60.
[76] Bagley JA, Reumann D, Bian S, et al. Fused cerebral organoids model interactions between brain regions. Nat Methods, 2017; 14, 743−51. doi:  10.1038/nmeth.4304
[77] Lancaster MA, Corsini NS, Wolfinger S, et al. Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol, 2017; 35, 659−66. doi:  10.1038/nbt.3906
[78] Kishore C, Bhadra P. Targeting brain cancer cells by nanorobot, a promising nanovehicle: new challenges and future perspectives. CNS Neurol Disord Drug Targets, 2021; 20, 531−9. doi:  10.2174/1871527320666210526154801
[79] Trujillo CA, Gao R, Negraes PD, et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell, 2019; 25, 558−69.e7. doi:  10.1016/j.stem.2019.08.002
[80] Muguruma K, Nishiyama A, Kawakami H, et al. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep, 2015; 10, 537−50. doi:  10.1016/j.celrep.2014.12.051
[81] Bergmann S, Lawler SE, Qu Y, et al. Blood-brain-barrier organoids for investigating the permeability of CNS therapeutics. Nat Protoc, 2018; 13, 2827−43. doi:  10.1038/s41596-018-0066-x
[82] Linkous A, Balamatsias D, Snuderl M, et al. Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep, 2019; 26 3203-11.
[83] Zecevic N, Chen Y, Filipovic R. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J. Comp. Neurol. 2005; 109–22.
[84] Cederquist GY, Asciolla JJ, Tchieu J, et al. Specification of positional identity in forebrain organoids. Nat Biotechnol, 2019; 37, 436−44. doi:  10.1038/s41587-019-0085-3
[85] Arzua T, Yan YS, Jiang CS, et al. Modeling alcohol-induced neurotoxicity using human induced pluripotent stem cell-derived three-dimensional cerebral organoids. Transl Psychiatry, 2020; 10, 347. doi:  10.1038/s41398-020-01029-4
[86] Kathuria A, Lopez-Lengowski K, Jagtap SS, et al. Transcriptomic landscape and functional characterization of induced pluripotent stem cell-derived cerebral organoids in schizophrenia. JAMA Psychiatry, 2020; 77, 745−54. doi:  10.1001/jamapsychiatry.2020.0196
[87] Brémond Martin C, Simon Chane C, Clouchoux C, et al. Recent trends and perspectives in cerebral organoids imaging and analysis. Front Neurosci, 2021; 15, 629067. doi:  10.3389/fnins.2021.629067
[88] Zilova L, Weinhardt V, Tavhelidse T, et al. Fish primary embryonic pluripotent cells assemble into retinal tissue mirroring in vivo early eye development. Elife, 2021; 10, e66998. doi:  10.7554/eLife.66998
[89] Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 2011; 472, 51−6. doi:  10.1038/nature09941
[90] Kuwahara A, Ozone C, Nakano T, et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun, 2015; 6, 6286. doi:  10.1038/ncomms7286
[91] Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell, 2012; 10, 771−85. doi:  10.1016/j.stem.2012.05.009
[92] Regent F, Chen HY, Kelley RA, et al. A simple and efficient method for generating human retinal organoids. Mol Vis, 2020; 26, 97−105.
[93] Cowan CS, Renner M, De Gennaro M, et al. Cell types of the human retina and its organoids at single-cell resolution. Cell, 2020; 182, 1623−40.e34. doi:  10.1016/j.cell.2020.08.013
[94] Kim S, Lowe A, Dharmat R, et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proc Natl Acad Sci USA, 2019; 116, 10824−33. doi:  10.1073/pnas.1901572116
[95] Wang DS, Wang JQ, Bai LY, et al. Long-term expansion of pancreatic islet organoids from resident Procr+ progenitors. Cell, 2020; 180, 1198−211.e19. doi:  10.1016/j.cell.2020.02.048
[96] Boj SF, Hwang CI, Baker LA, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell, 2015; 160, 324−38. doi:  10.1016/j.cell.2014.12.021
[97] Boretto M, Cox B, Noben M, et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development, 2017; 144, 1775−86.
[98] Luddi A, Pavone V, Semplici B, et al. Organoids of human endometrium: a powerful in vitro model for the endometrium-embryo cross-talk at the implantation site. Cells, 2020; 9, 1121. doi:  10.3390/cells9051121
[99] Turco MY, Gardner L, Hughes J, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol, 2017; 19, 568−77. doi:  10.1038/ncb3516
[100] Duarte AA, Gogola E, Sachs N, et al. BRCA-deficient mouse mammary tumor organoids to study cancer-drug resistance. Nat Methods, 2018; 15, 134−40. doi:  10.1038/nmeth.4535
[101] Drost J, Karthaus WR, Gao D, et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc, 2016; 11, 347−58. doi:  10.1038/nprot.2016.006
[102] Pappas KJ, Choi D, Sawyers CL, et al. Prostate organoid cultures as tools to translate genotypes and mutational profiles to pharmacological responses. J Vis Exp, 2019; 60346.
[103] Guo WX, Li L, He J, et al. Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips. Nat Genet, 2020; 52, 908−18. doi:  10.1038/s41588-020-0642-1
[104] Karthaus WR, Iaquinta PJ, Drost J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell, 2014; 159, 163−75. doi:  10.1016/j.cell.2014.08.017
[105] Chua CW, Shibata M, Lei M, et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat Cell Biol, 2014; 16, 951−61. doi:  10.1038/ncb3047
[106] Ma L, Li JW, Nie Q, et al. Organoid culture of human prostate cancer cell lines LNCaP and C4-2B. Am J Clin Exp Urol, 2017; 5, 25−33.
[107] Chen XW, Li C, Chen Y, et al. Differentiation of human induced pluripotent stem cells into Leydig-like cells with molecular compounds. Cell Death Dis, 2019; 10, 220. doi:  10.1038/s41419-019-1461-0
[108] Mullenders J, de Jongh E, Brousali A, et al. Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc Natl Acad Sci USA, 2019; 116, 4567−74. doi:  10.1073/pnas.1803595116
[109] Sakib S, Uchida A, Valenzuela-Leon P, et al. Formation of organotypic testicular organoids in microwell culture. Biol Reprod, 2019; 100, 1648−60. doi:  10.1093/biolre/ioz053
[110] Rodríguez Gutiérrez D, Eid W, Biason-Lauber A. A human gonadal cell model from induced pluripotent stem cells. Front Genet, 2018; 9, 498. doi:  10.3389/fgene.2018.00498
[111] Chen H, Ge RS, Zirkin BR. Leydig cells: from stem cells to aging. Mol. Cell Endocrinol, 2009; 306, 9−16. doi:  10.1016/j.mce.2009.01.023
[112] Sakib S, Goldsmith T, Voigt A, et al. Testicular organoids to study cell-cell interactions in the mammalian testis. Andrology, 2020; 8, 835−41. doi:  10.1111/andr.12680
[113] Sakib S, Yu Y, Voigt A, et al. Generation of porcine testicular organoids with testis specific architecture using microwell culture. J Vis Exp, 2019; 152.
[114] Baert Y, De Kock J, Alves-Lopes JP, et al. Primary human testicular cells self-organize into organoids with testicular properties. Stem Cell Rep, 2017; 8, 30−8. doi:  10.1016/j.stemcr.2016.11.012
[115] Schulze ML, Lemoine MD, Fischer AW, et al. Dissecting hiPSC-CM pacemaker function in a cardiac organoid model. Biomaterials, 2019; 206, 133−45. doi:  10.1016/j.biomaterials.2019.03.023
[116] Drakhlis L, Biswanath S, Farr CM, et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol, 2021; 39, 737−46. doi:  10.1038/s41587-021-00815-9
[117] Richards DJ, Li Y, Kerr CM, et al. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat Biomed Eng, 2020; 4, 446−62. doi:  10.1038/s41551-020-0539-4
[118] Harrison RK. Phase II and phase III failures: 2013-2015. Nat Rev Drug Discov, 2016; 15, 817−8. doi:  10.1038/nrd.2016.184
[119] Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol, 2020; 21, 571−84. doi:  10.1038/s41580-020-0259-3
[120] de Poel E, Lefferts JW, Beekman JM. Intestinal organoids for cystic Fibrosis research. J Cyst Fibros, 2020; 19, S60−4.
[121] Berkers G, van Mourik P, Vonk AM, et al. Rectal organoids enable personalized treatment of cystic fibrosis. Cell Rep, 2019; 26, 1701−8.e3. doi:  10.1016/j.celrep.2019.01.068
[122] Driehuis E, van Hoeck A, Moore K, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc Natl Acad Sci USA, 2019; 116, 26580−90. doi:  10.1073/pnas.1911273116
[123] Saito Y, Muramatsu T, Kanai Y, et al. Establishment of patient-derived organoids and drug screening for biliary tract carcinoma. Cell Rep, 2019; 27, 1265−76.e4. doi:  10.1016/j.celrep.2019.03.088
[124] Ludikhuize MC, Meerlo M, Burgering BMT, et al. Protocol to profile the bioenergetics of organoids using Seahorse. STAR Protoc, 2021; 2, 100386. doi:  10.1016/j.xpro.2021.100386
[125] Boj SF, Vonk AM, Statia M, et al. Forskolin-induced swelling in intestinal organoids: an in vitro assay for assessing drug response in cystic fibrosis patients. J Vis Exp, 2017; 11, 55159.
[126] Crowson MG, Ranisau J, Eskander A, et al. A contemporary review of machine learning in otolaryngology–head and neck surgery. Laryngoscope, 2020; 130, 45−51. doi:  10.1002/lary.27850
[127] Mohan S, Thirumalai C, Srivastava G. Effective heart disease prediction using hybrid machine learning techniques. IEEE Access, 2019; 7, 81542−54. doi:  10.1109/ACCESS.2019.2923707
[128] Rahman AKMS, Shamrat FMJM, Tasnim Z, et al. A comparative study on liver disease prediction using supervised machine learning algorithms. Int J Sci Technol Res, 2019; 8, 419−22.
[129] Chang YH, Thibault G, Madin O, et al. Deep learning based Nucleus Classification in pancreas histological images. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. 2017, 672-5.
[130] Štĕpánek L, Habarta F, Malá I, et al. A machine-learning approach to survival time-event predicting: initial analyses using stomach cancer data. In: 2020 International Conference on e-Health and Bioengineering. IEEE. 2020, 1-4.
[131] Qin JM, Chen L, Liu YH, et al. A machine learning methodology for diagnosing chronic kidney disease. IEEE Access, 2019; 8, 20991−1002.
[132] Kadir T, Fergus G. Lung cancer prediction using machine learning and advanced imaging techniques. Transl Lung Cancer Res, 2018; 7, 304−12. doi:  10.21037/tlcr.2018.05.15
[133] Das HS, Das A, Neog A, et al. Breast cancer detection: shallow convolutional neural network against deep convolutional neural networks based approach. Front Genet, 2023; 13, 1097207. doi:  10.3389/fgene.2022.1097207
[134] Munquad S, Si T, Mallik S, et al. A deep learning-based framework for supporting clinical diagnosis of glioblastoma subtypes. Front Genet, 2022; 13, 855420. doi:  10.3389/fgene.2022.855420
[135] Gaur L, Bhandari M, Razdan T, et al. Explanation-driven deep learning model for prediction of brain tumour status using MRI image data. Front Genet, 2022; 13, 822666. doi:  10.3389/fgene.2022.822666
[136] Zhang MM, Yang KL, Cui YC, et al. Current trends and research topics regarding intestinal organoids: an overview based on bibliometrics. Front Cell Dev Biol, 2021; 9, 609452. doi:  10.3389/fcell.2021.609452
[137] Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet, 2018; 19, 671−87. doi:  10.1038/s41576-018-0051-9
[138] Lehmann R, Lee CM, Shugart EC, et al. Human organoids: a new dimension in cell biology. Mol Biol Cell, 2019; 30, 1129−37. doi:  10.1091/mbc.E19-03-0135