[1] Chen C, Dong XP. Epidemiological characteristics of human prion diseases. Infect Dis Poverty, 2016; 5, 47. doi:  10.1186/s40249-016-0143-8
[2] Shi Q, Xie WL, Zhang BY, et al. Brain microglia were activated in sporadic CJD but almost unchanged in fatal familial insomnia and G114V genetic CJD. Virol J, 2013; 10, 216. doi:  10.1186/1743-422X-10-216
[3] Lv Y, Chen C, Zhang BY, et al. Remarkable activation of the complement system and aberrant neuronal localization of the membrane attack complex in the brain tissues of scrapie-infected rodents. Mol Neurobiol, 2015; 52, 1165−79. doi:  10.1007/s12035-014-8915-2
[4] Xu Y, Tian C, Sun J, et al. FBXW7-induced MTOR degradation forces autophagy to counteract persistent prion infection. Mol Neurobiol, 2016; 53, 706−19. doi:  10.1007/s12035-014-9028-7
[5] Xu Y, Tian C, Wang SB, et al. Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases. Autophagy, 2012; 8, 1604−20. doi:  10.4161/auto.21482
[6] Shi Q, Chen LN, Zhang BY, et al. Proteomics analyses for the global proteins in the brain tissues of different human prion diseases. Mol Cell Proteomics, 2015; 14, 854−69. doi:  10.1074/mcp.M114.038018
[7] Tian C, Liu D, Chen C, et al. Global transcriptional profiling of the postmortem brain of a patient with G114V genetic Creutzfeldt-Jakob disease. Int J Mol Med, 2013; 31, 676−88. doi:  10.3892/ijmm.2013.1239
[8] Shi Q, Chen LN, Lv Y, et al. Comparative proteomics analyses for 139A and ME7 scrapie infected mice brains in the middle and terminal stages. Proteomics Clin Appl, 2017; 11, 1600113. doi:  10.1002/prca.201600113
[9] Voet S, Srinivasan S, Lamkanfi M, et al. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med, 2019; 11, e10248.
[10] Chen LN, Shi Q, Zhang BY, et al. Proteomic analyses for the global S-nitrosylated proteins in the brain tissues of different human prion diseases. Mol Neurobiol, 2016; 53, 5079−96. doi:  10.1007/s12035-015-9440-7
[11] Katsumoto A, Takeuchi H, Tanaka F. Tau pathology in chronic traumatic encephalopathy and alzheimer's disease: similarities and differences. Front Neurol, 2019; 10, 980. doi:  10.3389/fneur.2019.00980
[12] Alonso AD, Cohen LS, Corbo C, et al. Hyperphosphorylation of Tau associates with changes in its function beyond microtubule stability. Front Cell Neurosci, 2018; 12, 338.
[13] Ansari SA, Emerald BS. The role of insulin resistance and protein O-GlcNAcylation in neurodegeneration. Front Neurosci, 2019; 13, 473. doi:  10.3389/fnins.2019.00473
[14] Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev, 2000; 64, 435−59. doi:  10.1128/MMBR.64.2.435-459.2000
[15] Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell, 2008; 31, 449−61. doi:  10.1016/j.molcel.2008.07.002
[16] Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009; 325, 834−40. doi:  10.1126/science.1175371
[17] Deng WK, Wang CW, Zhang Y, et al. GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences. Sci Rep, 2016; 6, 39787. doi:  10.1038/srep39787
[18] Carrico C, Meyer JG, He WJ, et al. The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications. Cell Metab, 2018; 27, 497−512. doi:  10.1016/j.cmet.2018.01.016
[19] Wang J, Zhang J, Shi Q, et al. Scrapie infection in experimental rodents and SMB-S15 cells decreased the brain endogenous levels and activities of Sirt1. J Mol Neurosci, 2015; 55, 1022−30. doi:  10.1007/s12031-014-0459-4
[20] Maimaitiming A, Xiao K, Hu C, et al. Aberrant decrease of the endogenous SIRT3 and increases of acetylated proteins in scrapie-infected cell line SMB-S15 and in the brains of experimental mice. ACS Chem Neurosci, 2019; 10, 4293−302. doi:  10.1021/acschemneuro.9b00341
[21] Sonawane SK, Chinnathambi S. Prion-like propagation of post-translationally modified Tau in Alzheimer's disease: a hypothesis. J Mol Neurosci, 2018; 65, 480−90. doi:  10.1007/s12031-018-1111-5
[22] Phadwal K, Kurian D, Salamat MKF, et al. Spermine increases acetylation of tubulins and facilitates autophagic degradation of prion aggregates. Sci Rep, 2018; 8, 10004. doi:  10.1038/s41598-018-28296-y
[23] Rasouli S, Abdolvahabi A, Croom CM, et al. Lysine acylation in superoxide dismutase-1 electrostatically inhibits formation of fibrils with prion-like seeding. J Biol Chem, 2017; 292, 19366−80. doi:  10.1074/jbc.M117.805283
[24] Xiao K, Zhang BY, Zhang XM, et al. Re-infection of the prion from the scrapie-infected cell line SMB-S15 in three strains of mice, CD1, C57BL/6 and Balb/c. Int J Mol Med, 2016; 37, 716−26. doi:  10.3892/ijmm.2016.2465
[25] Chen Z, Wen B, Wang QH, et al. Quantitative proteomics reveals the temperature-dependent proteins encoded by a series of cluster genes in Thermoanaerobacter tengcongensis. Mol Cell Proteomics, 2013; 12, 2266−77. doi:  10.1074/mcp.M112.025817
[26] Glancy B. Visualizing mitochondrial form and function within the cell. Trends Mol Med, 2020; 26, 58−70.
[27] Murphy MP, O'Neill LAJ. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell, 2018; 174, 780−4. doi:  10.1016/j.cell.2018.07.030
[28] Van Der Bliek AM, Sedensky MM, Morgan PG. Cell biology of the mitochondrion. Genetics, 2017; 207, 843−71. doi:  10.1534/genetics.117.300262
[29] Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer, 2016; 16, 619−34. doi:  10.1038/nrc.2016.71
[30] Hebbes TR, Thorne AW, Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J, 1988; 7, 1395−402. doi:  10.1002/j.1460-2075.1988.tb02956.x
[31] Cabot B, Cabot RA. Chromatin remodeling in mammalian embryos. Reproduction, 2018; 155, R147−58. doi:  10.1530/REP-17-0488
[32] Kim S, Kaang BK. Epigenetic regulation and chromatin remodeling in learning and memory. Exp Mol Med, 2017; 49, e281. doi:  10.1038/emm.2016.140
[33] Zhao SM, Xu W, Jiang WQ, et al. Regulation of cellular metabolism by protein lysine acetylation. Science, 2010; 327, 1000−4. doi:  10.1126/science.1179689
[34] Nakayasu ES, Burnet MC, Walukiewicz HE, et al. Ancient regulatory role of lysine acetylation in central metabolism. mBio, 2017; 8, e01894−17.
[35] Barjaktarovic Z, Merl-Pham J, Braga-Tanaka I, et al. Hyperacetylation of cardiac mitochondrial proteins is associated with metabolic impairment and sirtuin downregulation after chronic total body irradiation of ApoE-/- mice. Int J Mol Sci, 2019; 20, 5239. doi:  10.3390/ijms20205239
[36] Santo-Domingo J, Dayon L, Wiederkehr A. Protein lysine acetylation: grease or sand in the gears of β-cell mitochondria? J Mol Biol, 2020; 432, 1446-60.
[37] Chen LN, Sun J, Yang XD, et al. The brain NO levels and NOS activities ascended in the early and middle stages and descended in the terminal stage in scrapie-infected animal models. Mol Neurobiol, 2017; 54, 1786−96. doi:  10.1007/s12035-016-9755-z
[38] Shi Q, Zhang BY, Gao C, et al. Mouse-adapted scrapie strains 139A and ME7 overcome species barrier to induce experimental scrapie in hamsters and changed their pathogenic features. Virol J, 2012; 9, 63. doi:  10.1186/1743-422X-9-63
[39] Chen C, Xu XF, Zhang RQ, et al. Remarkable increases of α1-antichymotrypsin in brain tissues of rodents during prion infection. Prion, 2017; 11, 338−51. doi:  10.1080/19336896.2017.1349590