[1] Tonomura Y, Matsubara M, Kazama I. Biomarkers in urine and use of creatinine. In: Preedy VR, Patel VB. General Methods in Biomarker Research and their Applications. Springer. 2015, 165−86.
[2] Barrett JR. Urinary biomarkers as exposure surrogates: controlling for possible bias. Environ Health Perspect, 2015; 123, A97.
[3] World Health Organization (WHO). Biological monitoring of chemical exposure in the workplace. WHO. 1996.
[4] Deutsche Forschungsgemeinschaft (DFG). List of MAK and BAT values 2015: permanent senate commission for the investigation of health hazards of chemical compounds in the work area. DFG. 2015.
[5] American Conference of Governmental Industrial Hygienists (ACGIH). TLVs® and BEIs® based on the documentation of the threshold limit values for chemical substances and physical agents & biological exposure indices. ACGIH. 2019.
[6] Zhang JM, Guo JQ, Wu CH, et al. Early-life carbamate exposure and intelligence quotient of seven-year-old children. Environ Int, 2020; 145, 106105. doi:  10.1016/j.envint.2020.106105
[7] Yao Y, Chen DY, Yin JW, et al. Phthalate exposure linked to high blood pressure in Chinese children. Environ Int, 2020; 143, 105958. doi:  10.1016/j.envint.2020.105958
[8] Tait S, Carli F, Busani L, et al. Biomonitoring of Bis(2-ethylhexyl)phthalate (DEHP) in Italian children and adolescents: data from LIFE PERSUADED project. Environ Res, 2020; 185, 109428. doi:  10.1016/j.envres.2020.109428
[9] Barr DB, Wilder LC, Caudill SP, et al. Urinary creatinine concentrations in the U. S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect, 2005; 113, 192−200. doi:  10.1289/ehp.7337
[10] Middleton DRS, Watts MJ, Polya DA. A comparative assessment of dilution correction methods for spot urinary analyte concentrations in a UK population exposed to arsenic in drinking water. Environ Int, 2019; 130, 104721. doi:  10.1016/j.envint.2019.03.069
[11] Hsieh CY, Wang SL, Fadrowski JJ, et al. Urinary concentration correction methods for arsenic, cadmium, and mercury: a systematic review of practice-based evidence. Curr Environ Health Rep, 2019; 6, 188−99.
[12] Waikar SS, Sabbisetti VS, Bonventre JV. Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int, 2010; 78, 486−94. doi:  10.1038/ki.2010.165
[13] Tang KWA, Toh QC, Teo BW. Normalisation of urinary biomarkers to creatinine for clinical practice and research – when and why. Singapore Med J, 2015; 56, 7−10. doi:  10.11622/smedj.2015003
[14] Hoet P, Deumer G, Bernard A, et al. Urinary trace element concentrations in environmental settings: is there a value for systematic creatinine adjustment or do we introduce a bias? J Expo Sci Environ Epidemiol, 2016; 26, 296−302.
[15] Middleton DRS, Watts MJ, Lark RM, et al. Assessing urinary flow rate, creatinine, osmolality and other hydration adjustment methods for urinary biomonitoring using NHANES arsenic, iodine, lead and cadmium data. Environ Health, 2016; 15, 68. doi:  10.1186/s12940-016-0152-x
[16] Shelley R, Kim NS, Parsons PJ, et al. Uranium associations with kidney outcomes vary by urine concentration adjustment method. J Expo Sci Environ Epidemiol, 2014; 24, 58−64. doi:  10.1038/jes.2013.18
[17] Christensen K, Sobus J, Phillips M, et al. Changes in epidemiologic associations with different exposure metrics: a case study of phthalate exposure associations with body mass index and waist circumference. Environ Int, 2014; 73, 66−76. doi:  10.1016/j.envint.2014.07.010
[18] O’Brien KM, Upson K, Cook NR, et al. Environmental chemicals in urine and blood: improving methods for creatinine and lipid adjustment. Environ Health Perspect, 2016; 124, 220−7. doi:  10.1289/ehp.1509693
[19] O'Brien KM, Upson K, Buckley JP. Lipid and creatinine adjustment to evaluate health effects of environmental exposures. Curr Environ Health Rep, 2017; 4, 44−50.
[20] Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology, 1999; 10, 37−48. doi:  10.1097/00001648-199901000-00008
[21] Weaver VM, Kotchmar DJ, Fadrowski JJ, et al. Challenges for environmental epidemiology research: are biomarker concentrations altered by kidney function or urine concentration adjustment? J Expo Sci Environ Epidemiol, 2016; 26, 1−8.
[22] Lee JH, Ahn RM. Relevance of gender, age and the body mass index to changes in urinary creatinine concentration in Korean adults. J Environ Health Sci, 2010; 36, 215−21. doi:  10.5668/JEHS.2010.36.3.215
[23] Jung KS, Kim NS, Lee BK. Urinary creatinine concentration in the Korean population in KNHANES IV, 2009. J Environ Health Sci, 2012; 38, 31−41. doi:  10.5668/JEHS.2012.38.1.031
[24] Yeh HC, Lin YS, Kuo CC, et al. Urine osmolality in the US population: implications for environmental biomonitoring. Environ Res, 2015; 136, 482−90. doi:  10.1016/j.envres.2014.09.009
[25] Baxmann AC, Ahmed MS, Marques NC, et al. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol, 2008; 3, 348−54. doi:  10.2215/CJN.02870707
[26] Cao ZJ, Qu YL, Zhao F, et al. Sampling methods and errors appearing in the China National Human Biomonitoring Program. Chin J Epidemiol, 2018; 39, 1642−7. (In Chinese
[27] Cao ZJ, Lin SB, Zhao F, et al. Cohort profile: China National Human Biomonitoring (CNHBM)—A nationally representative, prospective cohort in Chinese population. Environ Int, 2021; 146, 106252.
[28] Ministry of Health of the People's Republic of China. WS/T 97-1996 Urine – determination of creatinine – spectrophotometric method. Beijing: Standards Press of China, 1997. (In Chinese)
[29] Cole TJ, Bellizzi MC, Flegal KM, et al. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ, 2000; 320, 1240−3. doi:  10.1136/bmj.320.7244.1240
[30] National Health and Family Planning Commission of PRC. WS/T 586-2018 Screening for overweight and obesity among school-age children and adolescents. Beijing: Standards Press of China, 2018. (In Chinese)
[31] Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med, 2009; 150, 604−12. doi:  10.7326/0003-4819-150-9-200905050-00006
[32] Health Canada. Fifth report on human biomonitoring of environmental chemicals in Canada: results of the Canadian health measures survey cycle 5 (2016–2017). Minister of Health. 2019.
[33] Butani L, Polinsky MS, Kaiser BA, et al. Dietary protein intake significantly affects the serum creatinine concentration. Kidney Int, 2002; 61, 1907.
[34] Yoon HJ, Park M, Yoon H, et al. The differential effect of cigarette smoking on glomerular filtration rate and proteinuria in an apparently healthy population. Hypertens Res, 2009; 32, 214−9. doi:  10.1038/hr.2008.37
[35] Maeda I, Hayashi T, Sato KK, et al. Cigarette smoking and the association with glomerular hyperfiltration and proteinuria in healthy middle-aged men. Clin J Am Soc Nephrol, 2011; 6, 2462−9. doi:  10.2215/CJN.00700111
[36] Ter Maaten JM, Maggioni AP, Latini R, et al. Clinical and prognostic value of spot urinary creatinine in chronic heart failure—An analysis from GISSI-HF. Am Heart J, 2017; 188, 189−95. doi:  10.1016/j.ahj.2017.01.017
[37] Ix JH, de Boer IH, Wassel CL, et al. Urinary creatinine excretion rate and mortality in persons with coronary artery disease: the heart and soul study. Circulation, 2010; 121, 1295−303. doi:  10.1161/CIRCULATIONAHA.109.924266
[38] Gamble MV, Ahsan H, Liu XH, et al. Folate and cobalamin deficiencies and hyperhomocysteinemia in Bangladesh. Am J Clin Nutr, 2005; 81, 1372−7. doi:  10.1093/ajcn/81.6.1372
[39] Gamble MV, Liu XH. Urinary creatinine and arsenic metabolism. Environ Health Perspect, 2005; 113, A442. doi:  10.1289/ehp.113-a442b
[40] Gamble MV, Liu XH, Ahsan H, et al. Folate and arsenic metabolism: a double-blind, placebo-controlled folic acid–supplementation trial in Bangladesh. Am J Clin Nutr, 2006; 84, 1093−101. doi:  10.1093/ajcn/84.5.1093
[41] Buckley JP, Herring AH, Wolff MS, et al. Prenatal exposure to environmental phenols and childhood fat mass in the Mount Sinai Children's Environmental Health Study. Environ Int, 2016; 91, 350−6. doi:  10.1016/j.envint.2016.03.019
[42] Wang WY, Schaumberg DA, Park SK. Cadmium and lead exposure and risk of cataract surgery in U. S. adults. Int J Hyg Environ Health, 2016; 219, 850−6. doi:  10.1016/j.ijheh.2016.07.012
[43] Derakhshan A, Philips EM, Ghassabian A, et al. Association of urinary bisphenols during pregnancy with maternal, cord blood and childhood thyroid function. Environ Int, 2021; 146, 106160. doi:  10.1016/j.envint.2020.106160
[44] Lee I, Park YJ, Kim MJ, et al. Associations of urinary concentrations of phthalate metabolites, bisphenol A, and parabens with obesity and diabetes mellitus in a Korean adult population: Korean National Environmental Health Survey (KONEHS) 2015-2017. Environ Int, 2021; 146, 106227. doi:  10.1016/j.envint.2020.106227