[1] |
Eslam M, Alkhouri N, Vajro P, et al. Defining paediatric metabolic (dysfunction)-associated fatty liver disease: an international expert consensus statement. Lancet Gastroenterol Hepatol, 2021; 6, 864−73. doi: 10.1016/S2468-1253(21)00183-7 |
[2] |
Younossi ZM, Golabi P, Paik JM, et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology, 2023; 77, 1335−47. doi: 10.1097/HEP.0000000000000004 |
[3] |
Shaunak M, Byrne CD, Davis N, et al. Non-alcoholic fatty liver disease and childhood obesity. Arch Dis Child, 2021; 106, 3−8. doi: 10.1136/archdischild-2019-318063 |
[4] |
Lee EJ, Choi M, Ahn SB, et al. Prevalence of nonalcoholic fatty liver disease in pediatrics and adolescents: a systematic review and meta-analysis. World J Pediatr, 2024; 20, 569−80. doi: 10.1007/s12519-024-00814-1 |
[5] |
Stepanova M, Younossi ZM. Independent association between nonalcoholic fatty liver disease and cardiovascular disease in the US population. Clin Gastroenterol Hepatol, 2012; 10, 646−50. doi: 10.1016/j.cgh.2011.12.039 |
[6] |
Tariq R, Axley P, Singal AK. Extra-Hepatic manifestations of nonalcoholic fatty liver disease: a review. J Clin Exp Hepatol, 2020; 10, 81−7. doi: 10.1016/j.jceh.2019.07.008 |
[7] |
Mantovani A, Zaza G, Byrne CD, et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: a systematic review and meta-analysis. Metabolism, 2018; 79, 64−76. doi: 10.1016/j.metabol.2017.11.003 |
[8] |
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism, 2016; 65, 1038−48. doi: 10.1016/j.metabol.2015.12.012 |
[9] |
Gouda W, Ashour E, Shaker Y, et al. MTP genetic variants associated with non-alcoholic fatty liver in metabolic syndrome patients. Genes Dis, 2017; 4, 222−8. doi: 10.1016/j.gendis.2017.09.002 |
[10] |
Zusi C, Mantovani A, Olivieri F, et al. Contribution of a genetic risk score to clinical prediction of hepatic steatosis in obese children and adolescents. Dig Liver Dis, 2019; 51, 1586−92. doi: 10.1016/j.dld.2019.05.029 |
[11] |
Dongiovanni P, Valenti L, Rametta R, et al. Genetic variants regulating insulin receptor signalling are associated with the severity of liver damage in patients with non-alcoholic fatty liver disease. Gut, 2010; 59, 267−73. doi: 10.1136/gut.2009.190801 |
[12] |
Hudert CA, Selinski S, Rudolph B, et al. Genetic determinants of steatosis and fibrosis progression in paediatric non-alcoholic fatty liver disease. Liver Int, 2019; 39, 540−56. doi: 10.1111/liv.14006 |
[13] |
Mente A, Meyre D, Lanktree MB, et al. Causal relationship between adiponectin and metabolic traits: a Mendelian randomization study in a multiethnic population. PLoS One, 2013; 8, e66808. doi: 10.1371/journal.pone.0066808 |
[14] |
Musso G, Gambino R, De Michieli F, et al. Adiponectin gene polymorphisms modulate acute adiponectin response to dietary fat: possible pathogenetic role in NASH. Hepatology, 2008; 47, 1167−77. doi: 10.1002/hep.22142 |
[15] |
Al-Serri A, Anstee QM, Valenti L, et al. The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies. J Hepatol, 2012; 56, 448−54. doi: 10.1016/j.jhep.2011.05.029 |
[16] |
Vespasiani-Gentilucci U, Dell'Unto C, De Vincentis A, et al. Combining genetic variants to improve risk prediction for NAFLD and its progression to cirrhosis: a proof of concept study. Can J Gastroenterol Hepatol, 2018; 2018, 7564835. |
[17] |
Mohseni F, Rashvand Z, Najafipour R, et al. Evaluating -238 G>A polymorphism association in TNF-α gene with metabolic parameters and nutritional intakes among the iranian NAFLD patients. Biochem Genet, 2016; 54, 685−95. doi: 10.1007/s10528-016-9747-8 |
[18] |
Zhou YJ, Li YY, Nie YQ, et al. Influence of polygenetic polymorphisms on the susceptibility to non-alcoholic fatty liver disease of Chinese people. J Gastroenterol Hepatol, 2010; 25, 772−7. doi: 10.1111/j.1440-1746.2009.06144.x |
[19] |
Peng XE, Wu YL, Lu QQ, et al. MTTP polymorphisms and susceptibility to non-alcoholic fatty liver disease in a Han Chinese population. Liver Int, 2014; 34, 118−28. doi: 10.1111/liv.12220 |
[20] |
Génin E. Missing heritability of complex diseases: case solved? Hum Genet, 2020; 139, 103-13. |
[21] |
Kleinstein SE, Rein M, Abdelmalek MF, et al. Whole-Exome sequencing study of extreme phenotypes of NAFLD. Hepatol Commun, 2018; 2, 1021−9. doi: 10.1002/hep4.1227 |
[22] |
Baselli GA, Jamialahmadi O, Pelusi S, et al. Rare ATG7 genetic variants predispose patients to severe fatty liver disease. J Hepatol, 2022; 77, 596−606. doi: 10.1016/j.jhep.2022.03.031 |
[23] |
Bale G, Vishnubhotla RV, Mitnala S, et al. Whole-Exome sequencing identifies a variant in phosphatidylethanolamine N-methyltransferase gene to be associated with lean-nonalcoholic fatty liver disease. J Clin Exp Hepatol, 2019; 9, 561−8. doi: 10.1016/j.jceh.2019.02.001 |
[24] |
Rutledge SM, Soper ER, Ma N, et al. Association of HSD17B13 and PNPLA3 with liver enzymes and fibrosis in hispanic/latino individuals of diverse genetic ancestries. Clin Gastroenterol Hepatol, 2023; 21, 2578-87. E11. |
[25] |
Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform, 2002; 3, 146−53. doi: 10.1093/bib/3.2.146 |
[26] |
Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Compr Physiol, 2017; 8, 1−8. |
[27] |
Rui LY. Energy metabolism in the liver. Compr Physiol, 2014; 4, 177−97. doi: 10.1002/j.2040-4603.2014.tb00548.x |
[28] |
Hudgins LC, Hellerstein M, Seidman C, et al. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Invest, 1996; 97, 2081−91. doi: 10.1172/JCI118645 |
[29] |
Mastoor Z, Diz-Chaves Y, González-Matías LC, et al. Renin-Angiotensin system in liver metabolism: gender differences and role of incretins. Metabolites, 2022; 12, 411. doi: 10.3390/metabo12050411 |
[30] |
Itkonen HM, Brown M, Urbanucci A, et al. Lipid degradation promotes prostate cancer cell survival. Oncotarget, 2017; 8, 38264−75. doi: 10.18632/oncotarget.16123 |
[31] |
Fan JJ, Li XL, Issop L, et al. ACBD2/ECI2-Mediated peroxisome-mitochondria interactions in leydig cell steroid biosynthesis. Mol Endocrinol, 2016; 30, 763−82. doi: 10.1210/me.2016-1008 |
[32] |
Tsang WY, Spektor A, Luciano DJ, et al. CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability. Mol Biol Cell, 2006; 17, 3423−34. doi: 10.1091/mbc.e06-04-0371 |
[33] |
Wren LM, Jiménez-Jáimez J, Al-Ghamdi S, et al. Genetic mosaicism in calmodulinopathy. Circ Genom Precis Med, 2019; 12, 375−85. |
[34] |
Alphonse N, Wanford JJ, Voak AA, et al. A family of conserved bacterial virulence factors dampens interferon responses by blocking calcium signaling. Cell, 2022; 185, 2354-69. E17. |
[35] |
Norling LL, Colca JR, Kelly PT, et al. Activation of calcium and calmodulin dependent protein kinase II during stimulation of insulin secretion. Cell Calcium, 1994; 16, 137−50. doi: 10.1016/0143-4160(94)90008-6 |
[36] |
Khalimonchuk O, Ostermann K, Rödel G. Evidence for the association of yeast mitochondrial ribosomes with Cox11p, a protein required for the CuB site formation of cytochrome c oxidase. Curr Genet, 2005; 47, 223−33. doi: 10.1007/s00294-005-0569-1 |
[37] |
Lee K, Haddad A, Osme A, et al. Hepatic mitochondrial defects in a nonalcoholic fatty liver disease mouse model are associated with increased degradation of oxidative phosphorylation subunits. Mol Cell Proteomics, 2018; 17, 2371−86. doi: 10.1074/mcp.RA118.000961 |
[38] |
Rius R, Bennett NK, Bhattacharya K, et al. Biallelic pathogenic variants in COX11 are associated with an infantile-onset mitochondrial encephalopathy. Hum Mutat, 2022; 43, 1970−8. doi: 10.1002/humu.24453 |
[39] |
Wang J, Yu L, Schmidt RE, et al. Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. Biochem Biophys Res Commun, 2005; 332, 735−42. doi: 10.1016/j.bbrc.2005.05.013 |
[40] |
Zhang Q, Sun SY, Zhang YL, et al. Identification of Scd5 as a functional regulator of visceral fat deposition and distribution. iScience, 2022; 25, 103916. doi: 10.1016/j.isci.2022.103916 |
[41] |
Zhang SB, Yang YZ, Shi YG. Characterization of human SCD2, an oligomeric desaturase with improved stability and enzyme activity by cross-linking in intact cells. Biochem J, 2005; 388, 135−42. doi: 10.1042/BJ20041554 |
[42] |
Yu GI, Mun KH, Yang SH, et al. Polymorphisms in the 3'-UTR of SCD5 gene are associated with hepatocellular carcinoma in Korean population. Mol Biol Rep, 2018; 45, 1705−14. doi: 10.1007/s11033-018-4313-6 |
[43] |
Wang ZX, Xia Y, Pan Y, et al. Weighted gene Co-expression network analysis of immune infiltration in nonalcoholic fatty liver disease. Endocr Metab Immune Disord Drug Targets, 2023; 23, 1173−85. doi: 10.2174/1871530323666221208105720 |