[1] Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. The Lancet, 2012; 379, 1245-55. doi:  10.1016/S0140-6736(11)61347-0
[2] Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin, 2011; 61, 69-90. doi:  10.3322/caac.v61:2
[3] Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma:a phase Ⅲ randomised, double-blind, placebo-controlled trial. Lancet Oncology, 2009; 10, 25-34. doi:  10.1016/S1470-2045(08)70285-7
[4] Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res, 2004; 64, 7099-109. doi:  10.1158/0008-5472.CAN-04-1443
[5] Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Research, 2006, 66; 11851-8. doi:  10.1158/0008-5472.CAN-06-1377
[6] de Lope CR, Tremosini S, Forner A, et al. Management of HCC. Journal of Hepatology, 2012; 56, S75-S87. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3004416
[7] Bruix J, Raoul JL, Sherman M, et al. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma:subanalyses of a phase Ⅲ trial. J Hepatol, 2012; 57, 821-9. doi:  10.1016/j.jhep.2012.06.014
[8] Azmi AN, Chan WK, Goh KL. Sustained complete remission of advanced hepatocellular carcinoma with sorafenib therapy. J Dig Dis, 2015; 16, 537-40. doi:  10.1111/cdd.2015.16.issue-9
[9] Forner A, Reig ME, Rodriguez de Lope C, et al. Current Strategy for Staging and Treatment:The BCLC Update and Future Prospects. Seminars in Liver Disease, 2010; 30, 61-74. doi:  10.1055/s-0030-1247133
[10] Beldner M, Jacobson M, Burges GE, et al. Localized palmar-plantar epidermal hyperplasia:a previously undefined dermatologic toxicity to sorafenib. Oncologist, 2007; 12, 1178-82. doi:  10.1634/theoncologist.12-10-1178
[11] Porta C, Paglino C, Imarisio I, et al. Uncovering Pandora's vase:the growing problem of new toxicities from novel anticancer agents. The case of sorafenib and sunitinib. Clin Exp Med, 2007; 7, 127-34. doi:  10.1007/s10238-007-0145-8
[12] Robert C, Soria J-C, Spatz A, et al. Cutaneous side-effects of kinase inhibitors and blocking antibodies. The Lancet Oncology, 2005; 6, 491-500. doi:  10.1016/S1470-2045(05)70243-6
[13] Awada A, Hendlisz A, Gil T, et al. Phase Ⅰ safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br J Cancer, 2005; 92, 1855-61. doi:  10.1038/sj.bjc.6602584
[14] Strumberg D, Clark JW, Awada A, et al. Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib:a review of four phase I trials in patients with advanced refractory solid tumors. Oncologist, 2007; 12, 426-37. doi:  10.1634/theoncologist.12-4-426
[15] Clark JW, Eder JP, Ryan D, et al. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43-9006, in patients with advanced, refractory solid tumors. Clin Cancer Res, 2005; 11, 5472-80. doi:  10.1158/1078-0432.CCR-04-2658
[16] Connock M, Round J, Bayliss S, et al. Sorafenib for the treatment of advanced hepatocellular carcinoma. Health Technol Assess, 2010; 14 Suppl 1, 17-21. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_eee0c344a8f53ef03fbac680d7c9400f
[17] van Schaik RH. CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist Updat, 2008; 11, 77-98. doi:  10.1016/j.drup.2008.03.002
[18] Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism:regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther, 2013; 138, 103-41. doi:  10.1016/j.pharmthera.2012.12.007
[19] Guo B, Tan Q, Guo D, et al. Patients carrying CYP2C19 loss of function alleles have a reduced response to clopidogrel therapy and a greater risk of in-stent restenosis after endovascular treatment of lower extremity peripheral arterial disease. J Vasc Surg, 2014; 60, 993-1001. doi:  10.1016/j.jvs.2014.03.293
[20] Hokimoto S, Chitose T, Mizobe M, et al. Impact of CYP3A5 polymorphism on platelet reactivity at percutaneous coronary intervention and after 9 months of aspirin and clopidogrel therapy in Japanese patients with coronary artery disease. Eur J Clin Pharmacol, 2014; 70, 667-73. doi:  10.1007/s00228-014-1672-3
[21] Seripa D, Pilotto A, Panza F, et al. Pharmacogenetics of cytochrome P450 (CYP) in the elderly. Ageing Res Rev, 2010; 9, 457-74. doi:  10.1016/j.arr.2010.06.001
[22] Sosa-Macias M, Llerena A. Cytochrome P450 genetic polymorphisms of Mexican indigenous populations. Drug Metabol Drug Interact, 2013; 28, 193-208. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0231854910
[23] Zheng YB, Zhan MX, Zhao W, et al. The relationship of kinase insert domain receptor gene polymorphisms and clinical outcome in advanced hepatocellular carcinoma patients treated with sorafenib. Med Oncol, 2014; 31, 209. doi:  10.1007/s12032-014-0209-z
[24] Neunzig I, Dragan CA, Widjaja M, et al. Whole-cell biotransformation assay for investigation of the human drug metabolizing enzyme CYP3A7. Biochim Biophys Acta, 2011; 1814, 161-7. doi:  10.1016/j.bbapap.2010.07.011
[25] Zimmerman EI, Roberts JL, Li L, et al. Ontogeny and sorafenib metabolism. Clin Cancer Res, 2012; 18, 5788-95. doi:  10.1158/1078-0432.CCR-12-1967
[26] Ghassabian S, Rawling T, Zhou F, et al. Role of human CYP3A4 in the biotransformation of sorafenib to its major oxidized metabolites. Biochem Pharmacol, 2012; 84, 215-23. doi:  10.1016/j.bcp.2012.04.001
[27] Jin TB, Ma LF, Zhang JY, et al. Polymorphisms and phenotypic analysis of cytochrome P450 2D6 in the Tibetan population. Gene, 2013; 527, 360-5. doi:  10.1016/j.gene.2013.03.110
[28] Dandara C, Lombard Z, Du Plooy I, et al. Genetic variants in CYP (-1A2, -2C9, -2C19, -3A4 and -3A5), VKORC1 and ABCB1 genes in a black South African population:a window into diversity. Pharmacogenomics, 2011; 12, 1663-70. doi:  10.2217/pgs.11.106
[29] Notarangelo MF, Bontardelli F, Merlini PA. Genetic and nongenetic factors influencing the response to clopidogrel. J Cardiovasc Med (Hagerstown), 2013; 14 Suppl 1, S1-7. http://www.ncbi.nlm.nih.gov/pubmed/24378836
[30] Heller F. Genetics/genomics and drug effects. Acta Clin Belg, 2013; 68, 77-80. doi:  10.2143/ACB.3210
[31] Hsieh KP, Lin YY, Cheng CL, et al. Novel mutations of CYP3A4 in Chinese. Drug Metab Dispos, 2001; 29, 268-73. http://www.ncbi.nlm.nih.gov/pubmed/11181494
[32] Sachse C, Brockmoller J, Bauer S, et al. Cytochrome P450 2D6 variants in a Caucasian population:allele frequencies and phenotypic consequences. Am J Hum Genet, 1997, 60; 284-95. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1712396/
[33] Wennerholm A, Dandara C, Sayi J, et al. The African-specific CYP2D617 allele encodes an enzyme with changed substrate specificity. Clin Pharmacol Ther, 2002; 71, 77-88. doi:  10.1067/mcp.2002.120239
[34] Sakuyama K, Sasaki T, Ujiie S, et al. Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47-51, 53-55, and 57). Drug Metab Dispos, 2008; 36, 2460-7. doi:  10.1124/dmd.108.023242
[35] van Schaik RH, van der Heiden IP, van den Anker JN, et al. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem, 2002; 48, 1668-71. http://www.ncbi.nlm.nih.gov/pubmed/12324482
[36] Jeong YH, Tantry US, Kim IS, et al. Effect of CYP2C19*2 and *3 loss-of-function alleles on platelet reactivity and adverse clinical events in East Asian acute myocardial infarction survivors treated with clopidogrel and aspirin. Circ Cardiovasc Interv, 2011; 4, 585-94. doi:  10.1161/CIRCINTERVENTIONS.111.962555
[37] Serpe L, Canaparo R, Scordo MG, et al. Pharmacogenetics of drug-metabolizing enzymes in Italian populations. Drug Metab Pers Ther, 2015; 30, 107-20. http://www.ncbi.nlm.nih.gov/pubmed/25527811