[1] Yankner BA, Lu T, Loerch P. The aging brain. Annu Rev Pathol: Mech Dis, 2008; 3, 41−66. doi:  10.1146/annurev.pathmechdis.2.010506.092044
[2] Rim C, You MJ, Nahm M, et al. Emerging role of senescent microglia in brain aging-related neurodegenerative diseases. Transl Neurodegener, 2024; 13, 10. doi:  10.1186/s40035-024-00402-3
[3] Li X, Feng XJ, Sun XD, et al. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2019. Front Aging Neurosci, 2022; 14, 937486.
[4] 2020 Alzheimer's disease facts and figures. Alzheimers Dement, 2020; 16, 391-460.
[5] Jia JP, Ning YY, Chen ML, et al. Biomarker changes during 20 years preceding alzheimer's disease. N Engl J Med, 2024; 390, 712−22. doi:  10.1056/NEJMoa2310168
[6] Cole JH, Franke K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci, 2017; 40, 681−90. doi:  10.1016/j.tins.2017.10.001
[7] Elliott ML, Belsky DW, Knodt AR, et al. Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Mol Psychiatry, 2021; 26, 3829−38. doi:  10.1038/s41380-019-0626-7
[8] Vidal-Pineiro D, Wang YP, Krogsrud SK, et al. Individual variations in ‘brain age’ relate to early-life factors more than to longitudinal brain change. eLife, 2021; 10, e69995. doi:  10.7554/eLife.69995
[9] Cole JH, Ritchie SJ, Bastin ME, et al. Brain age predicts mortality. Mol Psychiatry, 2018; 23, 1385−92. doi:  10.1038/mp.2017.62
[10] Kaufmann T, van der Meer D, Doan NT, et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat Neurosci, 2019; 22, 1617−23. doi:  10.1038/s41593-019-0471-7
[11] Cumplido-Mayoral I, Brugulat-Serrat A, Sánchez-Benavides G, et al. The mediating role of neuroimaging-derived biological brain age in the association between risk factors for dementia and cognitive decline in middle-aged and older individuals without cognitive impairment: a cohort study. Lancet Healthy Longev, 2024; 5, e276−86. doi:  10.1016/S2666-7568(24)00025-4
[12] Baecker L, Garcia-Dias R, Vieira S, et al. Machine learning for brain age prediction: Introduction to methods and clinical applications. eBioMedicine, 2021; 72, 103600. doi:  10.1016/j.ebiom.2021.103600
[13] Jawinski P, Markett S, Drewelies J, et al. Linking brain age gap to mental and physical health in the berlin aging study II. Front Aging Neurosci, 2022; 14, 791222. doi:  10.3389/fnagi.2022.791222
[14] Lee J, Burkett BJ, Min HK, et al. Deep learning-based brain age prediction in normal aging and dementia. Nat Aging, 2022; 2, 412−24. doi:  10.1038/s43587-022-00219-7
[15] Bermudez C, Plassard AJ, Chaganti S, et al. Anatomical context improves deep learning on the brain age estimation task. Magn Reson Imaging, 2019; 62, 70−7. doi:  10.1016/j.mri.2019.06.018
[16] Paulo A, Filho F, Olegário T, et al. Brain age prediction based on head computed tomography segmentation. In: Proceedings of the 6th International Workshop Machine Learning in Clinical Neuroimaging. Springer. 2023, 112-22.
[17] Morita R, Ando S, Fujita D, et al. Brain devlopment age prediction using convolutnal neural network on pediatrics brain Ct mages. In: Proceedings of 2021 International Conference on Machine Learning and Cybernetics. IEEE. 2021, 1-6.
[18] Wang JR, Zhang JH, Zhu YB, et al. Association between a healthy lifestyle and dementia in older adults with obesity: a prospective study in the UK biobank. J Affect Disord, 2025; 380, 421−9. doi:  10.1016/j.jad.2025.03.115
[19] Cournot M, Marquié JC, Ansiau D, et al. Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology, 2006; 67, 1208−14. doi:  10.1212/01.wnl.0000238082.13860.50
[20] Seo YK, Won CW, Soh Y. Associations between body composition and cognitive function in an elderly Korean population: a cohort-based cross-sectional study. Medicine, 2021; 100, e25027. doi:  10.1097/MD.0000000000025027
[21] Tikhonoff V, Casiglia E, Guidotti F, et al. Body fat and the cognitive pattern: a population-based study. Obesity, 2015; 23, 1502−10. doi:  10.1002/oby.21114
[22] Qizilbash N, Gregson J, Johnson ME, et al. BMI and risk of dementia in two million people over two decades: a retrospective cohort study. Lancet Diabetes Endocrinol, 2015; 3, 431−6. doi:  10.1016/S2213-8587(15)00033-9
[23] Chrzan R, Gleń A, Bryll A, et al. Computed tomography assessment of brain atrophy in centenarians. Int J Environ Res Public Health, 2019; 16, 3659. doi:  10.3390/ijerph16193659
[24] Tanabe C, Reed MJ, Pham TN, et al. Association of brain atrophy and masseter sarcopenia with 1-year mortality in older trauma patients. JAMA Surg, 2019; 154, 716−23. doi:  10.1001/jamasurg.2019.0988
[25] Lee PH, Macfarlane DJ, Lam TH, et al. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act, 2011; 8, 115. doi:  10.1186/1479-5868-8-115
[26] Lv KZ, Xu SJ, Sun YQ, et al. How individual BMI affected general cognitive ability in young adults: a moderated chain mediation model. Front Public Health, 2025; 13, 1559582. doi:  10.3389/fpubh.2025.1559582
[27] Tou NX, Wee SL, Pang BWJ, et al. Associations of fat mass and muscle function but not lean mass with cognitive impairment: the Yishun Study. PLoS One, 2021; 16, e0256702. doi:  10.1371/journal.pone.0256702
[28] Fitzpatrick AL, Kuller LH, Lopez OL, et al. Midlife and late-life obesity and the risk of dementia: cardiovascular health study. Arch Neurol, 2009; 66, 336−42.
[29] Xu SS, Wen S, Yang Y, et al. Association between body composition patterns, cardiovascular disease, and risk of neurodegenerative disease in the UK biobank. Neurology, 2024; 103, e209659. doi:  10.1212/WNL.0000000000209659
[30] Wulan SN, Westerterp KR, Plasqui G. Ethnic differences in body composition and the associated metabolic profile: a comparative study between Asians and Caucasians. Maturitas, 2010; 65, 315−9. doi:  10.1016/j.maturitas.2009.12.012
[31] Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med, 1994; 330, 613−22. doi:  10.1056/NEJM199403033300907
[32] Fu Z, Wu J, Nesil T, et al. Long-term high-fat diet induces hippocampal microvascular insulin resistance and cognitive dysfunction. Am J Physiol Endocrinol Metab, 2017; 312, E89−97. doi:  10.1152/ajpendo.00297.2016
[33] Curb JD, Rodriguez BL, Abbott RD, et al. Longitudinal association of vascular and Alzheimer's dementias, diabetes, and glucose tolerance. Neurology, 1999; 52, 971. doi:  10.1212/WNL.52.5.971
[34] Tanaka H, Gourley DD, Dekhtyar M, et al. Cognition, brain structure, and brain function in individuals with obesity and related disorders. Curr Obes Rep, 2020; 9, 544−9. doi:  10.1007/s13679-020-00412-y
[35] Cui CD, Mackey RH, Shaaban CE, et al. Associations of body composition with incident dementia in older adults: cardiovascular Health Study-Cognition Study. Alzheimers Dement, 2020; 16, 1402−11. doi:  10.1002/alz.12125
[36] Andrews JS, Gold LS, Reed MJ, et al. Appendicular lean mass, grip strength, and the incidence of dementia among older adults in the health ABC study. J Gerontol A Biol Sci Med Sci, 2023; 78, 2070−6. doi:  10.1093/gerona/glac254