| [1] | Yankner BA, Lu T, Loerch P. The aging brain. Annu Rev Pathol: Mech Dis, 2008; 3, 41−66. doi: 10.1146/annurev.pathmechdis.2.010506.092044 |
| [2] | Rim C, You MJ, Nahm M, et al. Emerging role of senescent microglia in brain aging-related neurodegenerative diseases. Transl Neurodegener, 2024; 13, 10. doi: 10.1186/s40035-024-00402-3 |
| [3] | Li X, Feng XJ, Sun XD, et al. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2019. Front Aging Neurosci, 2022; 14, 937486. |
| [4] | 2020 Alzheimer's disease facts and figures. Alzheimers Dement, 2020; 16, 391-460. |
| [5] | Jia JP, Ning YY, Chen ML, et al. Biomarker changes during 20 years preceding alzheimer's disease. N Engl J Med, 2024; 390, 712−22. doi: 10.1056/NEJMoa2310168 |
| [6] | Cole JH, Franke K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci, 2017; 40, 681−90. doi: 10.1016/j.tins.2017.10.001 |
| [7] | Elliott ML, Belsky DW, Knodt AR, et al. Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Mol Psychiatry, 2021; 26, 3829−38. doi: 10.1038/s41380-019-0626-7 |
| [8] | Vidal-Pineiro D, Wang YP, Krogsrud SK, et al. Individual variations in ‘brain age’ relate to early-life factors more than to longitudinal brain change. eLife, 2021; 10, e69995. doi: 10.7554/eLife.69995 |
| [9] | Cole JH, Ritchie SJ, Bastin ME, et al. Brain age predicts mortality. Mol Psychiatry, 2018; 23, 1385−92. doi: 10.1038/mp.2017.62 |
| [10] | Kaufmann T, van der Meer D, Doan NT, et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat Neurosci, 2019; 22, 1617−23. doi: 10.1038/s41593-019-0471-7 |
| [11] | Cumplido-Mayoral I, Brugulat-Serrat A, Sánchez-Benavides G, et al. The mediating role of neuroimaging-derived biological brain age in the association between risk factors for dementia and cognitive decline in middle-aged and older individuals without cognitive impairment: a cohort study. Lancet Healthy Longev, 2024; 5, e276−86. doi: 10.1016/S2666-7568(24)00025-4 |
| [12] | Baecker L, Garcia-Dias R, Vieira S, et al. Machine learning for brain age prediction: Introduction to methods and clinical applications. eBioMedicine, 2021; 72, 103600. doi: 10.1016/j.ebiom.2021.103600 |
| [13] | Jawinski P, Markett S, Drewelies J, et al. Linking brain age gap to mental and physical health in the berlin aging study II. Front Aging Neurosci, 2022; 14, 791222. doi: 10.3389/fnagi.2022.791222 |
| [14] | Lee J, Burkett BJ, Min HK, et al. Deep learning-based brain age prediction in normal aging and dementia. Nat Aging, 2022; 2, 412−24. doi: 10.1038/s43587-022-00219-7 |
| [15] | Bermudez C, Plassard AJ, Chaganti S, et al. Anatomical context improves deep learning on the brain age estimation task. Magn Reson Imaging, 2019; 62, 70−7. doi: 10.1016/j.mri.2019.06.018 |
| [16] | Paulo A, Filho F, Olegário T, et al. Brain age prediction based on head computed tomography segmentation. In: Proceedings of the 6th International Workshop Machine Learning in Clinical Neuroimaging. Springer. 2023, 112-22. |
| [17] | Morita R, Ando S, Fujita D, et al. Brain devlopment age prediction using convolutnal neural network on pediatrics brain Ct mages. In: Proceedings of 2021 International Conference on Machine Learning and Cybernetics. IEEE. 2021, 1-6. |
| [18] | Wang JR, Zhang JH, Zhu YB, et al. Association between a healthy lifestyle and dementia in older adults with obesity: a prospective study in the UK biobank. J Affect Disord, 2025; 380, 421−9. doi: 10.1016/j.jad.2025.03.115 |
| [19] | Cournot M, Marquié JC, Ansiau D, et al. Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology, 2006; 67, 1208−14. doi: 10.1212/01.wnl.0000238082.13860.50 |
| [20] | Seo YK, Won CW, Soh Y. Associations between body composition and cognitive function in an elderly Korean population: a cohort-based cross-sectional study. Medicine, 2021; 100, e25027. doi: 10.1097/MD.0000000000025027 |
| [21] | Tikhonoff V, Casiglia E, Guidotti F, et al. Body fat and the cognitive pattern: a population-based study. Obesity, 2015; 23, 1502−10. doi: 10.1002/oby.21114 |
| [22] | Qizilbash N, Gregson J, Johnson ME, et al. BMI and risk of dementia in two million people over two decades: a retrospective cohort study. Lancet Diabetes Endocrinol, 2015; 3, 431−6. doi: 10.1016/S2213-8587(15)00033-9 |
| [23] | Chrzan R, Gleń A, Bryll A, et al. Computed tomography assessment of brain atrophy in centenarians. Int J Environ Res Public Health, 2019; 16, 3659. doi: 10.3390/ijerph16193659 |
| [24] | Tanabe C, Reed MJ, Pham TN, et al. Association of brain atrophy and masseter sarcopenia with 1-year mortality in older trauma patients. JAMA Surg, 2019; 154, 716−23. doi: 10.1001/jamasurg.2019.0988 |
| [25] | Lee PH, Macfarlane DJ, Lam TH, et al. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act, 2011; 8, 115. doi: 10.1186/1479-5868-8-115 |
| [26] | Lv KZ, Xu SJ, Sun YQ, et al. How individual BMI affected general cognitive ability in young adults: a moderated chain mediation model. Front Public Health, 2025; 13, 1559582. doi: 10.3389/fpubh.2025.1559582 |
| [27] | Tou NX, Wee SL, Pang BWJ, et al. Associations of fat mass and muscle function but not lean mass with cognitive impairment: the Yishun Study. PLoS One, 2021; 16, e0256702. doi: 10.1371/journal.pone.0256702 |
| [28] | Fitzpatrick AL, Kuller LH, Lopez OL, et al. Midlife and late-life obesity and the risk of dementia: cardiovascular health study. Arch Neurol, 2009; 66, 336−42. |
| [29] | Xu SS, Wen S, Yang Y, et al. Association between body composition patterns, cardiovascular disease, and risk of neurodegenerative disease in the UK biobank. Neurology, 2024; 103, e209659. doi: 10.1212/WNL.0000000000209659 |
| [30] | Wulan SN, Westerterp KR, Plasqui G. Ethnic differences in body composition and the associated metabolic profile: a comparative study between Asians and Caucasians. Maturitas, 2010; 65, 315−9. doi: 10.1016/j.maturitas.2009.12.012 |
| [31] | Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med, 1994; 330, 613−22. doi: 10.1056/NEJM199403033300907 |
| [32] | Fu Z, Wu J, Nesil T, et al. Long-term high-fat diet induces hippocampal microvascular insulin resistance and cognitive dysfunction. Am J Physiol Endocrinol Metab, 2017; 312, E89−97. doi: 10.1152/ajpendo.00297.2016 |
| [33] | Curb JD, Rodriguez BL, Abbott RD, et al. Longitudinal association of vascular and Alzheimer's dementias, diabetes, and glucose tolerance. Neurology, 1999; 52, 971. doi: 10.1212/WNL.52.5.971 |
| [34] | Tanaka H, Gourley DD, Dekhtyar M, et al. Cognition, brain structure, and brain function in individuals with obesity and related disorders. Curr Obes Rep, 2020; 9, 544−9. doi: 10.1007/s13679-020-00412-y |
| [35] | Cui CD, Mackey RH, Shaaban CE, et al. Associations of body composition with incident dementia in older adults: cardiovascular Health Study-Cognition Study. Alzheimers Dement, 2020; 16, 1402−11. doi: 10.1002/alz.12125 |
| [36] | Andrews JS, Gold LS, Reed MJ, et al. Appendicular lean mass, grip strength, and the incidence of dementia among older adults in the health ABC study. J Gerontol A Biol Sci Med Sci, 2023; 78, 2070−6. doi: 10.1093/gerona/glac254 |