[1] |
WHO. Lassa fever. https://www.who.int/news-room/fact-sheets/detail/lassa-fever/. [2024-08-13] |
[2] |
CDC. Lassa fever. https://www.cdc.gov/vhf/lassa/index.html/. [2024-08-13] |
[3] |
Akpede GO, Asogun DA, Okogbenin SA, et al. Lassa fever outbreaks in Nigeria. Expert Rev Anti Infect Ther, 2018; 16, 663−6. doi: 10.1080/14787210.2018.1512856 |
[4] |
Lecompte E, Fichet-Calvet E, Daffis S, et al. Mastomys natalensis and Lassa fever, West Africa. Emerg Infect Dis, 2006; 12, 1971−4. doi: 10.3201/eid1212.060812 |
[5] |
Monath TP, Newhouse VF, Kemp GE, et al. Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone. Science, 1974; 185, 263−5. doi: 10.1126/science.185.4147.263 |
[6] |
Olayemi A, Obadare A, Oyeyiola A, et al. Arenavirus diversity and phylogeography of Mastomys natalensis rodents, Nigeria. Emerg Infect Dis, 2016; 22, 694−7. |
[7] |
Olayemi A, Cadar D, Magassouba N, et al. New hosts of the Lassa virus. Sci Rep, 2016; 6, 25280. doi: 10.1038/srep25280 |
[8] |
Grange ZL, Goldstein T, Johnson CK, et al. Ranking the risk of animal-to-human spillover for newly discovered viruses. Proc Natl Acad Sci USA, 2021; 118, e2002324118. doi: 10.1073/pnas.2002324118 |
[9] |
Smither AR, Bell-Kareem AR. Ecology of Lassa virus. In: Garry R. Lassa Fever: Epidemiology, Immunology, Diagnostics, and Therapeutics. Springer. 2020, 67-86. |
[10] |
Garry RF. Lassa fever - the road ahead. Nat Rev Microbiol, 2023; 21, 87−96. doi: 10.1038/s41579-022-00789-8 |
[11] |
Lo Iacono G, Cunningham AA, Fichet-Calvet E, et al. Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: the case of Lassa fever. PLoS Negl Trop Dis, 2015; 9, e3398. doi: 10.1371/journal.pntd.0003398 |
[12] |
Besson ME, Pépin M, Metral PA. Lassa fever: critical review and prospects for control. Trop Med Infect Dis, 2024; 9, 178. doi: 10.3390/tropicalmed9080178 |
[13] |
Yun NE, Walker DH. Pathogenesis of Lassa fever. Viruses, 2012; 4, 2031−48. doi: 10.3390/v4102031 |
[14] |
Andersen KG, Shylakhter I, Tabrizi S, et al. Genome-wide scans provide evidence for positive selection of genes implicated in Lassa fever. Philos Trans R Soc Lond B Biol Sci, 2012; 367, 868−77. doi: 10.1098/rstb.2011.0299 |
[15] |
Balogun OO, Akande OW, Hamer DH. Lassa fever: an evolving emergency in West Africa. Am J Trop Med Hyg, 2021; 104, 466−73. doi: 10.4269/ajtmh.20-0487 |
[16] |
Fisher-Hoch SP, Tomori O, Nasidi A, et al. Review of cases of nosocomial Lassa fever in Nigeria: the high price of poor medical practice. BMJ, 1995; 311, 857−9. doi: 10.1136/bmj.311.7009.857 |
[17] |
Inegbenebor U, Okosun J, Inegbenebor J. Prevention of Lassa fever in Nigeria. Trans R Soc Trop Med Hyg, 2010; 104, 51−4. doi: 10.1016/j.trstmh.2009.07.008 |
[18] |
Omilabu SA, Badaru SO, Okokhere P, et al. Lassa fever, Nigeria, 2003 and 2004. Emerg Infect Dis, 2005; 11, 1642−4. doi: 10.3201/eid1110.041343 |
[19] |
Nigeria Centre for Disease Control. Lassa fever situation report, epidemiological week 52; Report No. 52, 2023. https://ncdc.gov.ng/diseases/sitreps/?cat=5&name=An%20update%20of%20Lassa%20fever%20outbreak%20in%20 Nigeria. [2024-11-07] |
[20] |
Africa Centres for Disease Control and Prevention. Africa CDC epidemic intelligence weekly report, November 2024. https://africacdc.org/download/africa-cdc-weekly-event-based-surveillance-report-November-2024/. [2024-11-07] |
[21] |
Manning JT, Forrester N, Paessler S. Lassa virus isolates from Mali and the Ivory Coast represent an emerging fifth lineage. Front Microbiol, 2015; 6, 1037. |
[22] |
Whitmer SLM, Strecker T, Cadar D, et al. New lineage of Lassa virus, Togo, 2016. Emerg Infect Dis, 2018; 24, 599−602. doi: 10.3201/eid2403.171905 |
[23] |
Emmerich P, Thome-Bolduan C, Drosten C, et al. Reverse ELISA for IgG and IgM antibodies to detect Lassa virus infections in Africa. J Clin Virol, 2006; 37, 277−81. doi: 10.1016/j.jcv.2006.08.015 |
[24] |
Basinski AJ, Fichet-Calvet E, Sjodin AR, et al. Bridging the gap: Using reservoir ecology and human serosurveys to estimate Lassa virus spillover in West Africa. PLoS Comput Biol, 2021; 17, e1008811. doi: 10.1371/journal.pcbi.1008811 |
[25] |
Lehmann C, Kochanek M, Abdulla D, et al. Control measures following a case of imported Lassa fever from Togo, North Rhine Westphalia, Germany, 2016. Euro Surveill, 2017; 22, 17−00088. |
[26] |
Wolf T, Ellwanger R, Goetsch U, et al. Fifty years of imported Lassa fever: a systematic review of primary and secondary cases. J Travel Med, 2020; 27, taaa035. doi: 10.1093/jtm/taaa035 |
[27] |
Yadouleton A, Agolinou A, Kourouma F, et al. Lassa virus in pygmy mice, Benin, 2016-2017. Emerg Infect Dis, 2019; 25, 1977−9. doi: 10.3201/eid2510.180523 |
[28] |
Wang X, Ye XW, Li RH, et al. Spatio-temporal spread and evolution of Lassa virus in West Africa. BMC Infect Dis, 2024; 24, 314. doi: 10.1186/s12879-024-09200-8 |
[29] |
Ran QH, Chen H, Huang L, et al. The first case of Lassa fever in China. Electron J Emerging Infect Dis, 2024; 9, 1−5. (In Chinese) |
[30] |
Ibukun FI. Inter-lineage variation of Lassa virus glycoprotein epitopes: a challenge to Lassa virus vaccine development. Viruses, 2020; 12, 386. doi: 10.3390/v12040386 |
[31] |
Carr CR, Crawford KHD, Murphy M, et al. Deep mutational scanning reveals functional constraints and antibody-escape potential of Lassa virus glycoprotein complex. Immunity, 2024; 57, 2061-76. e11. |
[32] |
Mehand MS, Al-Shorbaji F, Millett P, et al. The WHO R&D blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts. Antiviral Res, 2018; 159, 63−7. doi: 10.1016/j.antiviral.2018.09.009 |
[33] |
Dan-Nwafor CC, Ipadeola O, Smout E, et al. A cluster of nosocomial Lassa fever cases in a tertiary health facility in Nigeria: description and lessons learned, 2018. Int J Infect Dis, 2019; 83, 88−94. doi: 10.1016/j.ijid.2019.03.030 |
[34] |
Asogun DA, Günther S, Akpede GO, et al. Lassa fever: epidemiology, clinical features, diagnosis, management and prevention. Infect Dis Clin North Am, 2019; 33, 933−51. doi: 10.1016/j.idc.2019.08.002 |
[35] |
Richmond JK, Baglole DJ. Lassa fever: epidemiology, clinical features, and social consequences. BMJ, 2003; 327, 1271−5. doi: 10.1136/bmj.327.7426.1271 |
[36] |
Chen JP, Cosgriff TM. Hemorrhagic fever virus-induced changes in hemostasis and vascular biology. Blood Coagul Fibrinolysis, 2000; 11, 461−83. doi: 10.1097/00001721-200007000-00010 |
[37] |
Oldstone MBA. Arenaviruses. I. The epidemiology molecular and cell biology of arenaviruses. Introduction. Curr Top Microbiol Immunol, 2002; 262, V−XII. |
[38] |
Hastie KM, Kimberlin CR, Zandonatti MA, et al. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3’ to 5’ exonuclease activity essential for immune suppression. Proc Natl Acad Sci USA, 2011; 108, 2396−401. doi: 10.1073/pnas.1016404108 |
[39] |
Hastie KM, Saphire EO. Lassa virus glycoprotein: stopping a moving target. Curr Opin Virol, 2018; 31, 52−8. doi: 10.1016/j.coviro.2018.05.002 |
[40] |
Kouba T, Vogel D, Thorkelsson SR, et al. Conformational changes in Lassa virus L protein associated with promoter binding and RNA synthesis activity. Nat Commun, 2021; 12, 7018. doi: 10.1038/s41467-021-27305-5 |
[41] |
Hastie KM, Zandonatti M, Liu T, et al. Crystal structure of the oligomeric form of Lassa virus matrix protein Z. J Virol, 2016; 90, 4556−62. doi: 10.1128/JVI.02896-15 |
[42] |
Andersen KG, Shapiro BJ, Matranga CB, et al. Clinical sequencing uncovers origins and evolution of Lassa virus. Cell, 2015; 162, 738−50. doi: 10.1016/j.cell.2015.07.020 |
[43] |
Robinson JE, Hastie KM, Cross RW, et al. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat Commun, 2016; 7, 11544. doi: 10.1038/ncomms11544 |
[44] |
Li S, Sun ZY, Pryce R, et al. Acidic pH-induced conformations and LAMP1 binding of the Lassa virus glycoprotein spike. PLoS Pathog, 2016; 12, e1005418. doi: 10.1371/journal.ppat.1005418 |
[45] |
Hastie KM, Zandonatti MA, Kleinfelter LM, et al. Structural basis for antibody-mediated neutralization of Lassa virus. Science, 2017; 356, 923−8. doi: 10.1126/science.aam7260 |
[46] |
ter Meulen J, Badusche M, Satoguina J, et al. Old and New World arenaviruses share a highly conserved epitope in the fusion domain of the glycoprotein 2, which is recognized by Lassa virus-specific human CD4+ T-cell clones. Virology, 2004; 321, 134−43. doi: 10.1016/j.virol.2003.12.013 |
[47] |
Lenz O, ter Meulen J, Klenk HD, et al. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci USA, 2001; 98, 12701−5. doi: 10.1073/pnas.221447598 |
[48] |
Amanat F, Duehr J, Oestereich L, et al. Antibodies to the glycoprotein GP2 subunit cross-react between old and new world arenaviruses. mSphere, 2018; 3, e00189−18. |
[49] |
Lu XJ, Lin SH, De Mel N, et al. Deamidation in moxetumomab pasudotox leading to conformational change and immunotoxin activity loss. J Pharm Sci, 2020; 109, 2676−83. doi: 10.1016/j.xphs.2020.06.002 |
[50] |
Kotliar D, Raju S, Tabrizi S, et al. Genome-wide association study identifies human genetic variants associated with fatal outcome from Lassa fever. Nat Microbiol, 2024; 9, 751−62. doi: 10.1038/s41564-023-01589-3 |