[1] Manicklal S, Emery VC, Lazzarotto T, et al. The "silent" global burden of congenital cytomegalovirus. Clin Microbiol Rev, 2013; 26, 86−102. doi:  10.1128/CMR.00062-12
[2] Li HZ, Wang Q, Zhang YY, et al. Onset of coronary heart disease is associated with HCMV infection and increased CD14+ CD16+ monocytes in a population of Weifang, China. Biomed Environ Sci, 2020; 33, 573−82.
[3] Reeves M, Sinclair J. Aspects of human cytomegalovirus latency and reactivation. In: Shenk TE, Stinski MF. Human Cytomegalovirus. Springer. 2008; 325, 297−313.
[4] Xia WW, Yan H, Zhang YY, et al. Congenital human cytomegalovirus infection inducing sensorineural hearing loss. Front Microbiol, 2021; 12, 649690. doi:  10.3389/fmicb.2021.649690
[5] Gao Y, Tie YQ, Zhao LQ, et al. Rapid internal control reference recombinase-aided amplification assays for EBV and CMV detection. Biomed Environ Sci, 2021; 34, 650−5.
[6] Du Y, Zhang GX, Liu ZJ. Human cytomegalovirus infection and coronary heart disease: a systematic review. Virol J, 2018; 15, 31. doi:  10.1186/s12985-018-0937-3
[7] Zheng WJ, Xu Q, Zhang YY, et al. Toll-like receptor-mediated innate immunity against herpesviridae infection: a current perspective on viral infection signaling pathways. Virol J, 2020; 17, 192. doi:  10.1186/s12985-020-01463-2
[8] Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet, 1997; 349, 1436−42. doi:  10.1016/S0140-6736(96)07495-8
[9] Zhang XN, Tang N, Xi DM, et al. Human cytomegalovirus promoting endothelial cell proliferation by targeting regulator of G-protein signaling 5 hypermethylation and downregulation. Sci Rep, 2020; 10, 2252. doi:  10.1038/s41598-020-58680-6
[10] Jarvis MA, Nelson JA. Human cytomegalovirus persistence and latency in endothelial cells and macrophages. Curr Opin Microbiol, 2002; 5, 403−7. doi:  10.1016/S1369-5274(02)00334-X
[11] Vasilieva E, Gianella S, Freeman ML. Novel strategies to combat CMV-related cardiovascular disease. Pathog Immun, 2020; 5, 240−74. doi:  10.20411/pai.v5i1.382
[12] Weseslindtner L, Görzer I, Roedl K, et al. Intrapulmonary human cytomegalovirus replication in lung transplant recipients is associated with a rise of CCL-18 and CCL-20 chemokine levels. Transplantation, 2017; 101, 197−203. doi:  10.1097/TP.0000000000001065
[13] Zicari S, Arakelyan A, Palomino RAÑ, et al. Human cytomegalovirus-infected cells release extracellular vesicles that carry viral surface proteins. Virology, 2018; 524, 97−105. doi:  10.1016/j.virol.2018.08.008
[14] Bentz GL, Jarquin-Pardo M, Chan G, et al. Human cytomegalovirus (HCMV) infection of endothelial cells promotes naïve monocyte extravasation and transfer of productive virus to enhance hematogenous dissemination of HCMV. J Virol, 2006; 80, 11539−55. doi:  10.1128/JVI.01016-06
[15] Rahbar A, Soderberg-Nauclér C. Human cytomegalovirus infection of endothelial cells triggers platelet adhesion and aggregation. J Virol, 2005; 79, 2211−20. doi:  10.1128/JVI.79.4.2211-2220.2005
[16] Glueck DH, Mandel J, Karimpour-Fard A, et al. Exact calculations of average power for the Benjamini-Hochberg procedure. Int J Biostat, 2008; 4, 11.
[17] Adam E, Probtsfield JL, Burek J, et al. High levels of cytomegalovirus antibody in patients requiring vascular surgery for atherosclerosis. Lancet, 1987; 330, 291−3. doi:  10.1016/S0140-6736(87)90888-9
[18] Lebedeva AM, Shpektor AV, Vasilieva EY, et al. Cytomegalovirus infection in cardiovascular diseases. Biochemistry (Moscow), 2018; 83, 1437−47. doi:  10.1134/S0006297918120027
[19] Ceccarelli M, Venanzi Rullo E, Nunnari G. Risk factors of venous thrombo-embolism during cytomegalovirus infection in immunocompetent individuals. A systematic review. Eur J Clin Microbiol Infect Dis, 2018; 37, 381−90. doi:  10.1007/s10096-018-3185-y
[20] Wang S, Zou F, Wu S, et al. Neurotrophic factor levels in the serum and cerebrospinal fluid of neonates infected with human cytomegalovirus. Microbiol Immunol, 2021; 65, 373−82. doi:  10.1111/1348-0421.12918
[21] Arcangeletti MC, D'Accolti M, Maccari C, et al. Impact of human cytomegalovirus and human herpesvirus 6 infection on the expression of factors associated with cell fibrosis and apoptosis: clues for implication in systemic sclerosis development. Int J Mol Sci, 2020; 21, 6397. doi:  10.3390/ijms21176397
[22] Botto S, Streblow DN, DeFilippis V, et al. IL-6 in human cytomegalovirus secretome promotes angiogenesis and survival of endothelial cells through the stimulation of survivin. Blood, 2011; 117, 352−61. doi:  10.1182/blood-2010-06-291245
[23] Ma Y, Chen SS, Feng YY, et al. Identification of novel biomarkers involved in pulmonary arterial hypertension based on multiple-microarray analysis. Biosci Rep, 2020; 40, BSR20202346. doi:  10.1042/BSR20202346
[24] Renauer PA, Saruhan-Direskeneli G, Coit P, et al. Identification of susceptibility loci in IL6, RPS9/LILRB3, and an intergenic locus on chromosome 21q22 in takayasu arteritis in a genome-wide association study. Arthritis Rheumatol, 2015; 67, 1361−8. doi:  10.1002/art.39035
[25] Gao LB, Zhou B, Zhang L, et al. R497K polymorphism in epidermal growth factor receptor gene is associated with the risk of acute coronary syndrome. BMC Med Genet, 2008; 9, 74.
[26] Tamura R, Miyagawa JI, Nishida M, et al. Immunohistochemical localization of Betacellulin, a member of epidermal growth factor family, in atherosclerotic plaques of human aorta. Atherosclerosis, 2001; 155, 413−23. doi:  10.1016/S0021-9150(00)00576-1
[27] Tomita M, Hirata Y, Uchihashi M, et al. Characterization of epidermal growth factor receptors in cultured vascular smooth muscle cells of rat aorta. Endocrinol Jpn, 1986; 33, 177−84. doi:  10.1507/endocrj1954.33.177
[28] Pircher A, Treps L, Bodrug N, et al. Endothelial cell metabolism: a novel player in atherosclerosis? Basic principles and therapeutic opportunities. Atherosclerosis, 2016; 253, 247−57. doi:  10.1016/j.atherosclerosis.2016.08.011
[29] Yang QH, Xu JA, Ma Q, et al. PRKAA1/AMPKα1-driven glycolysis in endothelial cells exposed to disturbed flow protects against atherosclerosis. Nat Commun, 2018; 9, 4667. doi:  10.1038/s41467-018-07132-x
[30] Ali L, Schnitzler JG, Kroon J. Metabolism: the road to inflammation and atherosclerosis. Curr Opin Lipidol, 2018; 29, 474−80. doi:  10.1097/MOL.0000000000000550
[31] Huang H, Tang S, Ji M, et al. p300-mediated lysine 2-hydroxyisobutyrylation regulates glycolysis. Mol Cell, 2018; 70, 663−78.e6. doi:  10.1016/j.molcel.2018.04.011
[32] Fan K, Wang JW, Sun WT, et al. MUC16 C-terminal binding with ALDOC disrupts the ability of ALDOC to sense glucose and promotes gallbladder carcinoma growth. Exp Cell Res, 2020; 394, 112118. doi:  10.1016/j.yexcr.2020.112118
[33] Fareed MM, El-Esawi MA, El-Ballat EM, et al. In silico drug screening analysis against the overexpression of PGAM1 gene in different cancer treatments. Biomed Res Int, 2021; 2021, 5515692.
[34] Shimba Y, Senda R, Katayama K, et al. Skeletal muscle-specific forkhead box protein-O1 overexpression suppresses atherosclerosis progression in apolipoprotein E-knockout mice. Biochem Biophys Res Commun, 2021; 540, 61−6. doi:  10.1016/j.bbrc.2021.01.001
[35] Menghini R, Casagrande V, Iuliani G, et al. Metabolic aspects of cardiovascular diseases: is FoxO1 a player or a target? Int J Biochem Cell Biol, 2020; 118, 105659.
[36] Cai Z, He Y, Chen Y. Role of mammalian target of rapamycin in atherosclerosis. Curr Mol Med, 2018; 18, 216−32.
[37] Ai D, Jiang HF, Westerterp M, et al. Disruption of mammalian target of rapamycin complex 1 in macrophages decreases chemokine gene expression and atherosclerosis. Circ Res, 2014; 114, 1576−84. doi:  10.1161/CIRCRESAHA.114.302313
[38] Hsu YJ, Hsu SC, Huang SM, et al. Hyperphosphatemia induces protective autophagy in endothelial cells through the inhibition of Akt/mTOR signaling. J Vasc Surg, 2015; 62, 210−21.e2. doi:  10.1016/j.jvs.2014.02.040
[39] Kaminski H, Marseres G, Yared N, et al. mTOR inhibitors prevent CMV infection through the restoration of functional αβ and γδ T cells in kidney transplantation. J Am Soc Nephrol, 2022; 33, 121−37. doi:  10.1681/ASN.2020121753
[40] Gao W, Liu HB, Yuan J, et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-α mediated NF-κB pathway. J Cell Mol Med, 2016; 20, 2318−27. doi:  10.1111/jcmm.12923
[41] Tam LS, Kitas GD, González-Gay MA. Can suppression of inflammation by anti-TNF prevent progression of subclinical atherosclerosis in inflammatory arthritis? Rheumatology (Oxford), 2014; 53, 1108-19.
[42] Zheng Q, Tao R, Gao HH, et al. HCMV-encoded UL128 enhances TNF-α and IL-6 expression and promotes PBMC proliferation through the MAPK/ERK pathway in vitro. Viral Immunol, 2012; 25, 98−105. doi:  10.1089/vim.2011.0064
[43] Zhang W, Xu W, Chen WL, et al. Interplay of autophagy inducer rapamycin and proteasome inhibitor MG132 in reduction of foam cell formation and inflammatory cytokine expression. Cell Transplant, 2018; 27, 1235−48. doi:  10.1177/0963689718786229
[44] Zhou ZX, Ren Z, Yan BJ, et al. The role of ubiquitin E3 ligase in atherosclerosis. Curr Med Chem, 2021; 28, 152−68.
[45] Liu XJ, Yang B, Huang SN, et al. Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase. PLoS Pathog, 2017; 13, e1006542. doi:  10.1371/journal.ppat.1006542